• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Versões das propriedades A e B de Lindenstrauss para operadores compactos

Brito, Leonardo da Silva, 92-99307-3945 23 March 2018 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-16T14:49:10Z No. of bitstreams: 2 Dissertação.pdf: 26629967 bytes, checksum: d8fcb48ed60770cf6ba7a8936168718d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-16T14:49:24Z (GMT) No. of bitstreams: 2 Dissertação.pdf: 26629967 bytes, checksum: d8fcb48ed60770cf6ba7a8936168718d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-05-16T14:49:24Z (GMT). No. of bitstreams: 2 Dissertação.pdf: 26629967 bytes, checksum: d8fcb48ed60770cf6ba7a8936168718d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-03-23 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / The main goal in this dissertation is to study the versions for compact operators of Lindenstrauss property A and B. In the course of our work, we present results concerning weak-star topology, Schauder basis, approximation properties, Banach spaces that locally depend upon finitely many coordinates, strictly convex spaces, uniformly convex spaces, among others. In 2014 Miguel Martín answered positively the following question: Are there compact operators between Banach spaces that can not be approximated by compact operators that attain their norms? In order to do that, he introduced two properties called properties Ak and Bk or versions for compact operators of Lindenstrauss properties. In this dissertation we present some results regarding Lindenstrauss properties A and B, and we also provide several results regarding properties Ak and Bk. / O objetivo desta dissertação é estudar as versões das propriedades A e B de Lindenstrauss para operadores compactos. No decorrer do nosso trabalho, apresentamos resultados sobre a topologia fraca-estrela, bases de Schauder, propriedades da aproximação, espaços de Banach cuja norma depende localmente de finitas coordenados, espaço estritamente convexo, espaço uniformemente convexo, dentre outros. Em 2014 Miguel Martín publicou um artigo respondendo de maneira positiva a seguinte pergunta: Existem operadores compactos entre espaços de Banach que não podem ser aproximados por operadores compactos que atingem a norma? Ao fazer isso, introduziu, no mesmo trabalho, duas propriedades chamadas de propriedades Ak e Bk ou versões para operadores compactos das propriedades de Lindenstrauss. Nesta dissertação, são apresentados de maneira detalhada resultados relacionados às propriedades A e B de Lindenstrauss e propriedades Ak e Bk.
2

Composition Operators on Classes of Holomorphic Functions on Banach Spaces

Santacreu Ferra, Daniel 05 September 2022 (has links)
[ES] El objetivo principal de esta tesis es el estudio de diferentes propiedades (principalmente ergódicas) de operadores de composición y de composición ponderados actuando en espacios de funciones holomorfas definidas en un espacio de Banach de dimensión infinita. Sea X un espacio de Banach y U un subconjunto abierto. Dada una aplicación φ : U → U, la acción f 7 → Cφ ( f ) = f ◦ φ define un operador, llamado operador de composición (y a φ se le llama símbolo del operador). Consideramos este operador actuando en diferentes espacios de funciones. La filosofía general es intentar caracterizar en cada caso las propiedades de nuestro interés en función de condiciones en φ. También, dada ψ: U → C, el operador de multiplicación se define como Mψ( f ) = ψ · f y (con φ como antes), el operador de composición ponderado como Cψ,φ ( f ) = ψ·( f ◦φ) (en este caso ψ se conoce como el peso o multiplicador del operador). Nuevamente, la idea es describir propiedades de estos operadores en términos de condiciones sobre φ y/o ψ. Claramente Cψ,φ = Mψ ◦ Cφ , y tomando φ = idU (la identidad en U) o ψ ≡ 1 (la función constante 1) recuperamos Mψ y Cφ . Denotamos con B a la bola unidad abierta de X . El espacio de funciones holomorfas f : B → C se denota H(B). Escribimos Hb(B) para el espacio de funciones holomorfas en B de tipo acotado y H∞(B) para el espacio de funciones holomorfas y acotadas en B. Vamos a considerar operadores de composición y de composición ponderados definidos en cada uno de estos espacios (tomando entonces U = B en la definición). También consideramos operadores de composición definidos en el espacio vectorial de polinomios continuos y m-homogéneos (denotado P (m X )). En este caso tomamos U = X . La tesis consta de cinco capítulos. En el Capítulo 1 damos las definiciones y resultados básicos necesarios para que el texto sea autocontenido. En el Capítulo 2 tratamos con operadores de composición ergódicos en media y acotados en potencias definidos en P (m X ). En el Capítulo 3 estudiamos operadores de composición ergódicos en media y acotados en potencias definidos en H(B), Hb(B) y H∞(B); tratando también el caso particular en que B es la bola de un espacio de Hilbert. En el Capítulo 4 estudiamos la compacidad de operadores de composición ponderados definidos en H∞(B), así como la acotación, reflexividad, cuándo es Montel y la compacidad (débil) en Hb(B). Finalmente, en el Capítulo 5 obtenemos resultados sobre la acotación en potencias y ergodicidad en media de operadores de composición ponderados actuando en H(B), Hb(B) y H∞(B); así como sobre compacidad y ergodicidad en media del operador de multiplicación. / [CA] L’objectiu principal d’aquesta tesi és l’estudi de diferents propietats (principalment ergòdiques) d’operadors de composició i de composició ponderats actuant en espais de funcions holomorfes en un espai de Banach de dimensió infinita. Siga X un espai de Banach i U un subconjunt obert. Donada una aplicació φ : U → U, l’acció f 7 → Cφ ( f ) = f ◦ φ defineix un operador, anomenat operador de compo- sició (i φ s’anomena símbol de l’operador). Considerem aquest operador actuant en diferents espais de funcions. La filosofia general és intentar caracteritzar en cada cas les propietats del nostre interés en funció de condicions en φ. També, donada ψ: U → C, l’operador de multiplicació es defineix com a Mψ( f ) = ψ · f i (amb φ com abans), l’operador de composició ponderat com a Cψ,φ ( f ) = ψ · ( f ◦ φ) (en aquest cas ψ es coneix com el pes o multiplicador de l’operador). Novament, la idea és descriure propietats d’aquests operadors en termes de condicions sobre φ i/o ψ. Clarament Cψ,φ = Mψ ◦ Cφ , i prenent φ = idU (la identitat en U) o ψ ≡ 1 (la funció constant 1) recuperem Mψ i Cφ . Denotem per B la bola unitat oberta d’X . L’espai de funcions holomorfes f : B → C es denota H(B). Escrivim Hb(B) per a l’espai de funcions holomorfes en B de tipus fitat i H∞(B) per a l’espai de funcions holomorfes i fitades en B. Anem a considerar ope- radors de composició i de composició ponderats definits en cadascun d’aquests espais (prenent llavors U = B en la definició). També considerem operadors de composició definits en l’espai vectorial de polinomis continus i m-homogenis (denotat P (m X )). En aquest cas prenem U = X . La tesi consta de cinc capítols. En el Capítol 1 donem les definicions i resultats bàsics necessaris perquè el text siga autocontingut. En el Capítol 2 tractem amb ope- radors de composició ergòdics en mitjana i fitats en potències definits en P (m X ). En el Capítol 3 estudiem operadors de composició ergòdics en mitjana i fitats en potències definits en H(B), Hb(B) i H∞(B); tractant també el cas particular en que B és la bola d’un espai de Hilbert. En el Capítol 4 estudiem la compacitat d’operadors de composi- ció ponderats definits en H∞(B), així com també la fitació, reflexivitat, quan és Montel i la compacitat (feble) en Hb(B). Finalment, en el Capítol 5 obtenim resultats sobre la fitació en potències i ergodicitat en mitjana d’operadors de composició ponderats actuant en H(B), Hb(B) i H∞(B); així com també sobre compacitat i ergodicitat en mitjana de l’operador de multiplicació. / [EN] The main aim in this thesis is to study different properties (mostly ergodic) of compo- sition and weighted composition operators acting on spaces of holomorphic functions defined on an infinite dimensional complex Banach space. Let X be a Banach space and U some open subset. Given a mapping φ : U → U the action f 7 → Cφ ( f ) = f ◦ φ defines an operator, called composition operator (and φ is called the symbol of the operator). We consider this operator acting on different spaces of functions. The general philosophy is to try to characterise in each case the properties of our interest in terms of conditions on φ. Also, given ψ: U → C the multiplication operator is defined as Mψ( f ) = ψ· f and (with φ as above), the weighted composition operator as Cψ,φ ( f ) = ψ · ( f ◦ φ) (here ψ is called the weight or multiplier of the operator). Again, the idea is to describe properties of these operators in terms of conditions on ψ and/or φ. Clearly Cψ,φ = Mψ ◦ Cφ , and taking φ = idU (the identity on U) or ψ ≡ 1 (the constant function 1) we recover Mψ and Cφ . We denote the open unit ball of X by B. The space of all holomorphic functions f : B → C is denoted by H(B). We write Hb(B) for the space holomorphic functions of bounded type on B, and H∞(B) for the space of bounded holomorphic functions on B. We are going to consider composition and weighted composition operators defined on each one of these spaces (taking then U = B in the definition). We also consider composition operators defined on the vector space of all continuous m-homogeneous polynomials on X (which is denoted by P (m X )). In this case we take U = X . The thesis consists of 5 chapters. In Chapter 1 we introduce definitions and ba- sic results, needed to make the text self-contained. In Chapter 2 we deal with mean ergodic and power bounded composition operators defined on P (m X ). In Chapter 3 we study mean ergodic and power bounded composition operators defined on H(B), Hb(B) and H∞(B); considering also the particular case when B is the ball of a Hilbert space. In Chapter 4 we study compactness of weighted composition operators defined on H∞(B), as well as boundedness, reflexivity, being Montel and (weak) compactness on Hb(B). Finally, in Chapter 5 we obtain different results about power bounded- ness and mean ergodicity of weighted composition operators acting on H(B), Hb(B) and H∞(B), as well as about compactness and mean ergodicity of the multiplication operator. / Santacreu Ferra, D. (2022). Composition Operators on Classes of Holomorphic Functions on Banach Spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185235
3

Weighted Composition Operators on Spaces of Analytic Functions

Gomez Orts, Esther 30 May 2022 (has links)
[ES] El objetivo de esta tesis es estudiar distintas propiedades de los operadores de composición ponderados en diferentes espacios ponderados de funciones analíticas. Dado un peso v estrictamente positivo y continuo en el disco complejo, consideramos unos ciertos espacios de Banach de funciones analíticas en el discto complejo. Estos espacios son los conjuntos de las funciones holomorfas en el disco f tales que el supremo, de los z en el disco, de v(z)|f(z)| es finito. También consideramos los espacios de las funciones holorfas f que cumplen que v(z)|f(z)| tiende a cero cuando |z| se acerca a 1. Dada una sucesión de pesos, trabajamos con los espacios formados por las intersecciones y uniones de los espacios de Banach ponderados determinados por los pesos de la sucesión. El espacio resultante de la intersección es un espacio de Fréchet y es el límite proyectivo de los espacios de Banach citados. Este espacio está provisto de la topología del límite proyectivo. El espacio resultante de la unión es un espacio LB (límite de Banach), y es el límite inductivo de los espacios citados, con la topología del límite inductivo. Cuando la sucesión de pesos viene determinada por los pesos (1-|z|)^n con n natural, el espacio resultante de la unión se llama espacio de Korenblum, que también es un límite inductivo. En la tesis estudiamos la continuidad, compacidad e invertibilidad de los operadores de composición ponderados en los espacios descritos arriba. También estudiamos algunas propiedades de su espectro y de su espectro puntual. / [CA] L'objectiu d'aquesta tesi és estudiar distintes propietats dels operadors de composició ponderats en diferents espais ponderats de funcions analítiques. Donat un pes v estrictament positiu i continu en el disc del pla complex, considerem uns certs espais de Banach de funcions analítiques en el disc complex. Aquests espais són els conjunts de les funcions holomorfes en el disc f tals que el suprem, dels z en el disc, de v(z)|f(z)| és finit. També considerem els espai de les funcions que verifiquen que v(z)|f(z)| tendeix a zero quan |z| s'apropa a 1. Donada una successió de pesos, treballem amb els espais formats per les interseccions i unions dels espais de Banach ponderats determinats pels pesos de la successió. L'espai resultant de la intersecció és un espai de Fréchet, i és el límit projectiu dels espais de Banach esmentats. Aquest espai està prove ̈ıt de la topologia del l ́ımit projectiu. L'espai resultant de la unió és un espai LB (límit de Banach), i és el límit inductiu dels espais esmentats, amb la topologia del límit inductiu. Quan la successió de pesos està determinada pels pesos (1-|z|)^n amb n natural, l'espai resultant de la unió s'anomena espai de Korenblum, que també és un límit inductiu. En al tesi estudiem la continu ̈ıtat, , compacitat i invertibilitat de l'operador de composició ponderat en els espais descrits abans. També estudiem algunes propietats del seu espectre i del seu espectre puntual. / [EN] The aim of this thesis is to study some properties of the weighted composition operators on different weighted spaces of analytic functions. Given a weight v strictly positive and continuous on the complex disc, we consider certain Banach spaces of analytic functions on the complex disc. These spaces are the sets of the holomorphic functions on the disc f such that the supremum, when z is in the disc, of v(z)|f(z)| is finite. We also consider the spaces of the holomorphic functions f such that v(z)|f(z)| tends to 0 whenever |z| goes to 1. Given a sequence of weights, we work with the spaces described by the intersection or union of the weighted Banach spaces determined by the weights in the sequence. The space of the intersection is a Fréchet space and it is the projective limit of the mentioned Banach spaces. This space is endowed with the projective limit topology. The space given by the union is an LB-space (limit of Banach), and it is the inductive limit of the mentioned spaces, with the inductive limit topology. When the sequence is given by the weights (1-|z|)^n with n natural, the space of the union is called Korenblum space, which is also an inductive limit. In the thesis we study the continuity, compactness and invertibility of the weighted composition operators on the spaces described above. We also study some properties of the spectrum and point spectrum. / Gomez Orts, E. (2022). Weighted Composition Operators on Spaces of Analytic Functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183028

Page generated in 0.0716 seconds