Spelling suggestions: "subject:"3space modèle"" "subject:"1space modèle""
1 |
Opérateurs de composition sur les espaces modèles / Composition operators on model spacesKaraki, Muath 08 January 2015 (has links)
Cette thèse est consacrée à l'étude des opérateurs de composition sur les espaces modèles. Soit [Phi] une fonction analytique du disque unité dans lui-même et soit [Théta] une fonction intérieure, c'est à dire une fonction holomorphe et bornée par 1 dont les limites radiales sur le cercle sont de module 1 presque partout par rapport à la mesure de Lebesgue. A cette fonction [Théta], on associe l'espace modèle K[Théta], défini comme l'ensemble des fonctions f ∈ H² qui sont orthogonales au sous-espace [Théta]H². Ici H² est l'espace de Hardy du disque unité. Ces sous-espaces sont importants en théorie des opérateurs car ils servent à modéliser une large classe de contractions sur un espace de Hilbert. Le premier problème auquel nous nous intéressons concerne la compacité d'un opérateur de composition C[Phi] vu comme opérateur de K[Théta], dans H². Récemment, Lyubarskii et Malinnikova ont obtenu un joli critère de compacité pour ces opérateurs qui fait intervenir la fonction de comptage de Nevanlinna du symbole [Phi]. Ce critère généralise le critère classique de Shapiro. Dans une première partie de la thèse, nous généralisons ce résultat de Lyubarskii-Malinnikova à une classe plus générale de sous-espaces, à savoir les espaces de de Branges-Rovnyak ou certains de leurs sous-espaces. Les techniques utilisées sont en particulier des inégalités fines de type Bernstein pour ces espaces. Le deuxième problème auquel nous nous intéressons dans cette thèse concerne l'invariance de K[Théta] sous l'action de C [Phi]. Ce problème nous amène à considérer une structure de groupe sur le disque unité du plan complexe via les automorphismes qui fixent le point 1. A travers cette action de groupe, chaque point du disque produit une classe d'équivalence qui se trouve être une suite de Blaschke. On montre alors que les produits de Blaschke correspondant sont des solutions "minimales" d'une équation fonctionnelle [Psi]°[Phi]=[Lambda][Psi], où [Lambda] est une constante unimodulaire et [Phi] un automorphisme du disque unité. Ces résultats sont ensuite appliqués au problème d'invariance d'un espace modèle par un opérateur de composition. / This thesis concerns the study of composition operators on model spaces. Let [Phi] be an analytic function on the unit disk into itself and let [Théta] be an inner function, that is a holomorphic function bounded by 1 such that the radial limits on the unit circle are of modulus 1 almost everywhere with respect to Lebesgue measure. With this function [Théta], we associate the model space K[Théta], defined as the set of functions f ∈ H², which are orthogonal to the subspace [Théta]H². Here H² is the Hardy space on the unit disc. These subspaces are important in operator theory because they are used to model a large class of contractions on Hilbert space. The first problem which we are interested in concerns the compactness of the composition operator C[Phi] as an operator on H² into H². Recently, Lyubarskii and Malinnikova have obtained a nice criterion for the compactness of these operators which is related to the Nevanlinna counting function. This criterion generalizes the classical criterion of Shapiro. In the first part of the thesis, we generalize this result of Lyubarskii-Malinnikova to a more general class of subspaces, known as de Branges-Rovnyak spaces or some subspaces of them. The techniques that are used are particular Bernstein type inequalities of these spaces.The second problem in which we are interested in this thesis concerns the invariance of K[Théta] under C[Phi]. We present a group structure on the unit disc via the automorphisms which fix the point 1. Then, through theinduced group action, each point of the unit disc produces an equivalence class which turns out to be a Blaschke sequence. Moreover, the corresponding Blaschke products are minimal solutions of the functional equation [Psi]°[Phi]=[Lambda][Psi] where [Lambda] is a unimodular constant and is an automorphism of the unit disc. These results are applied in the invariance problem of the model spaces by the composition operator.
|
2 |
Opérateurs de Toeplitz sur l'espace de Bergman harmonique et opérateurs de Teoplitz tronqués de rang fini / Toeplitz operators on the Bergman harmonic space and truncated Toeplitz operators of finite rankRandriamahaleo, Fanilo rajaofetra 20 July 2015 (has links)
Dans la première partie de la thèse, nous donnons les résultats classiques concernant l’espace de Hardy, les espaces modèles et les espaces de Bergman analytique et harmonique. Les notions de base telles que les projections et les noyaux reproduisant y sont introduites. Nous exposons ensuite nos résultats concernant d’une part, la stabilité du produit et la commutativité de deux opérateurs de Toeplitz quasihomogènes et d’autre part, la description matricielle des opérateurs de Toeplitz tronqués du type "a" "dans le cas de la dimension finie. / In the first part of the thesis,we give some classical results concerning theHardy space, models spaces and analytic and harmonic Bergman spaces. The basic concepts such as projections and reproducing kernels are introduced. We then describe our results on the the stability of the product and the commutativity of two quasihomogeneous Toeplitz operators on the harmonic Bergman space. Finally, we give the matrix description of truncated Toeplitz operators of type "a" in the finite dimensional case.
|
3 |
Spectre étendu des opérateurs et applications / Extended spectrum of operators and applicationsAlkanjo, Hasan 10 December 2014 (has links)
Cette thèse s'articule autour d'une notion spectrale assez récente, appelée le spectre étendu des opérateurs. Dans la première partie nous fournissons des propriétés générales du spectre étendu d'un opérateur dans certains cas particuliers, tels que le cas de dimension finie et celui des opérateurs inversibles. Nous nous intéressons dans la deuxième partie à l'étude du spectre étendu de l'opérateur shift tronqué Su. En particulier, nous donnons une description complète des vecteurs propres étendus associes à chaque valeur propre étendue de Sb, ou b est un produit de Blaschke quelconque. Dans la troisième partie nous décrirons complètement le spectre étendu et les sous espaces propres étendus d'une classe d'opérateurs très importante : celle des opérateurs normaux. Nous commençons d'abord par la classe des opérateurs qui sont produits d'un opérateur positif par un autoadjoint. Ensuite, nous utilisons le théorème de Fuglede-Putnam pour déduire une description complète des valeurs et des vecteurs propres étendus des opérateurs normaux, en fonction de leur mesure spectrale. Dans la dernière partie, nous appliquons nos résultats des trois premières parties sur des exemples concrets. En particulier, nous traitons= le problème des sous espaces propres étendus des opérateurs définis dans un espace de dimension finie. Ensuite, nous montrons l'existence d'un opérateur compact quasinilpotent dont le spectre étendu est réduit au singleton {1}. Enfin, nous traitons deux opérateurs de Cesaro très importants dans les applications / This thesis is based on a relatively new spectral notion, called extended spectrum of operators. In the first part, we provide general properties of extended spectrum of an operator in some special cases, such as the case of finite dimension and the case of invertible operator. We focused in the second part on characterizing the extended spectrum of truncated shift operator Su. In particular, we give a complete description of the extended eigenvectors associated to each extended eigenvalue of Sb, where b is a Blaschke product. In the third part, we describe the extended spectrum and the extended eigenvectors of a very important class of operators , that is the normal operators. We first start by describing these last sets for the product of a positive and a self-adjoint operator which are both injective. After, we use the Fuglede-Putnam theorem to describe the same sets for normal operators, in terms of their spectral measure. In the last part, we apply our results from the last three parts on concrete examples. In particular, we address the problem of extended eigenvectors of operators defined in a finite dimension space. Next, we show the existence of a quasinilpotent compact operator whose extended spectrum is reduced to {1}. Finally, we study two Cesaro operators which are very important in applications
|
Page generated in 0.0306 seconds