Spelling suggestions: "subject:"compound poisson processes"" "subject:"compound boisson processes""
1 |
Reciprocal class of jump processesConforti, Giovanni, Dai Pra, Paolo, Roelly, Sylvie January 2014 (has links)
Processes having the same bridges as a given reference Markov process
constitute its reciprocal class. In this paper we study the reciprocal class
of compound Poisson processes whose jumps belong to a finite set A in R^d.
We propose a characterization of the reciprocal class as the unique set of
probability measures on which a family of time and space transformations
induces the same density, expressed in terms of the reciprocal invariants.
The geometry of A plays a crucial role in the design of the transformations,
and we use tools from discrete geometry to obtain an optimal characterization.
We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.
|
2 |
Quelques contributions à l'étude de modèles bivariés de dégradation et de choc en fiabilité / Some contributions to study of bivariate models for deterioration and shocks in reliabilityPham, Hai Ha 15 October 2013 (has links)
La thèse est consacrée à l'étude de modèles bivariés en Fabilité, qui tiennent compte de différents types de dépendance entre composants. Dans un premier temps, nous nous intéressons au cas d'un système formé de deux composants, dont la dégradation est modélisée par un processus de Lévy croissant bivarié (subordinateur bivarié). Sous cette hypothèse, eux études sont faites : l'une sous l'hypothèse de surveillance continue et de réparation parfaite du système, l'autre sous une hypothèse d'inspections périodiques et de réparation imparfaite. Dans un deuxième temps, la thèse est consacrée à un autre modèle de survie bivarié, sous influence d'un environnement stochastique stressant ponctuel. La dépendance entre composants est ici induite par un environnement stressant commun, qui induit des détériorations différentes sur chacun des composants (augmentation du taux de panne pour l'un, du niveau de détérioration pour l'autre). Pour chacun des modèles étudiés, nos résultats montrent l'importance de la prise en compte de la dépendance entre les composants d'un système. / The thesis is devoted to the study of bivariate models in reliability, which take into account several types of dependence between components. As a first step, we are interested in a two-component system with accumulating deterioration modeled by a bivariate increasing Lévy process (bivariate subordinator). Under this hypothesis, two different studies are made : one under the assumption of continuous monitoring and perfect repair, the other one under the assumption of periodic inspections and imperfect repair. In a second step, the thesis is devoted to the study of another bivariate survivalmodel, under the influence of a stochastic and stressful environment. The dependence between components is here induced by the common stressful environment, with different incidence on the two components (increment of failure rate for one, of deterioration level for the other). For each of the studied models, our results show the importance of taking into account the dependence between the components of a system.
|
Page generated in 0.1109 seconds