• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 69
  • 64
  • 21
  • 12
  • 11
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 381
  • 381
  • 148
  • 97
  • 91
  • 64
  • 64
  • 63
  • 63
  • 61
  • 57
  • 55
  • 47
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Dry Stacked Surface Bonded Masonry - Structural Testing and Evaluation

Murray, Eric B. 03 December 2007 (has links) (PDF)
The ENDURA block system is a dry-stack surface-bonded masonry system. Typical masonry construction uses thin-set mortar in the bed joints to provide a bearing surface for the blocks while the ENDURA system typically relies on shims and a surface bonding coat to ensure that the wall is level and plumb and to provide stability. Typical ENDURA block walls are built with the reinforcement placed eccentrically in the walls. Testing was performed on ten walls in order to determine axial capacity. The walls were ten feet high by eight feet wide. Each of the walls was built using a different configuration of block type, reinforcement spacing, and amount of grout. A steel frame with two hydraulic jacks was used to apply vertical load to the top of the walls. Three conclusions were drawn from the axial testing performed. First, typical ENDURA block walls built without thin set mortar in the bed joints have similar axial capacity to walls built with the thin set mortar. Second, walls built with un-reinforced cells grouted resisted significantly more load than walls built with only the reinforced cells grouted. Third, more research is required in order to establish a control and to determine whether the eccentrically placed rebar has a significant effect on the axial capacity of the walls.
172

Structural Properties of ICLT Wall Panels Composed of Beetle Killed Wood

Wilson, David Edward 06 June 2012 (has links) (PDF)
Interlocking Cross Laminated Timber (ICLT) wall panels are a new wood construction product similar to Cross Laminated Timber panels. Besides being an innovative structural system, they also utilize beetle killed timber from many of the forests that have been devastated by the Mountain Pine Beetle. Three tests were performed on three ply ICLT panels measuring 8 feet (2.44m) wide, 8 feet (2.44m) tall and 8.5 inches (21.6cm) thick to determine the racking, flexural and axial strengths of the wall panels. After each test was performed the walls were disassembled and investigated for cause of failure. Using the data from the tests as a benchmark, simple analytical models to predict the design capacities of the walls for racking, flexural, and axial strengths were established. The analytical models for racking strength, flexural strength and axial strength predicted reasonably well the measured strength values. Additional testing is necessary to increase the available database, further validate the analytical models developed, better understand the structural performance of ICLT panels, and establish acceptable design methodology for ICLT wall panels.
173

Internal Curing of Concrete Bridge Decks in Utah: Mountain View Corridor Project

Yaede, Joseph Michael 12 July 2013 (has links) (PDF)
The objectives of this research were to 1) monitor in-situ moisture and diffusivity for both conventional concrete and concrete containing pre-wetted lightweight fine aggregate (LWFA), 2) compare deck performance in terms of early-age cracking, compressive strength, and chloride ingress, and 3) compare concrete properties in terms of compressive strength, chloride permeability, elastic modulus, and water content in the laboratory using cylinders cast in the field at the time of deck construction. The research involved field and laboratory evaluations of four newly constructed bridge decks located in northern Utah, two constructed using conventional concrete and two constructed using pre-wetted LWFA to promote internal curing. Data from sensors embedded in the concrete decks indicate that the moisture content of the internally cured concrete was consistently 1.5 to 4 percentage points higher than the moisture content of the conventional concrete for the first 6 months following deck construction. By 1 year, however, the internally cured concrete showed little difference in moisture content compared to the conventional concrete. While the internally cured concrete decks had a higher average moisture content, the electrical conductivity values were not consistently higher than those measured on the conventional concrete decks during the first approximately 8 to 10 months. However, after 8 to 10 months, both internally cured concrete decks exhibited higher electrical conductivity values than those measured on the conventional concrete decks. Laboratory compressive strength data indicate that, for the first 6 months following deck construction, the two concrete mixtures exhibited very similar strength gain characteristics. However, at 1 year, the conventional concrete was stronger by an average of 12.9 percent, or nearly 900 psi, than the internally cured concrete. In rapid chloride permeability testing, the internally cured concrete consistently passed between 13.1 and 17.5 percent less current than that passed by the conventional concrete. Laboratory free-free resonant testing at 1 year showed that the modulus of the internally cured concrete was 3.9 percent lower, on average, than that of the conventional concrete. For the tested specimens, the moisture content of the internally cured concrete was 0.5 percentage points higher, on average, than that of the conventional concrete. In the field, Schmidt rebound hammer testing showed that the internally cured concrete was neither consistently stronger nor weaker than the conventional concrete. On average, the internally cured concrete exhibited higher chloride concentrations than the conventional concrete. On average, the conventional concrete bridge decks had 4.6, 21.5, and 2.8 times more cracking than the internally cured concrete decks at 5 months, 8 months, and 1 year, respectively. At 1 year, very distinctive reflection cracks from the joints between the underlying pre-cast half-deck panels were observed on all of the decks.
174

Effect of High Percentages of Reclaimed Asphalt Pavement on Mechanical Properties of Cement-Treated Base Material

Tolbert, Jacob Clark 10 July 2014 (has links) (PDF)
Full-depth reclamation (FDR) is an increasingly common technique that is used to rehabilitate flexible pavements. Implementation of FDR on rehabilitation projects produces several desirable benefits. However, these benefits are not fully realized due to the fact that state department of transportation specifications typically limit the reclaimed asphalt pavement (RAP) content of pavement base material to 50 percent. The objective of this research was to evaluate the effects of RAP content, cement content, temperature, curing time, curing condition, and moisture state on the strength, stiffness, and deformation characteristics of cement-treated base (CTB) mixtures containing high percentages of RAP.For this research, one aggregate base material and one RAP material were used for all samples. RAP content ranged from 0 to 100 percent in increments of 25 percent, and low, medium, and high cement levels corresponding to 7-day unconfined compressive strength (UCS) values of 200, 400, and 600 psi, respectively, were selected for testing. Moisture-density, UCS, resilient modulus, and permanent deformation tests were performed for various combinations of factors, and several statistical analyses were utilized to evaluate the results of the UCS, resilient modulus, and permanent deformation testing.The results of this work show that CTB containing RAP can be made to achieve 7-day UCS values approaching 600 psi regardless of RAP content. With regards to stiffness, the data collected in this study indicate that the resilient modulus of CTB containing RAP is affected by temperature in the range from 72 to 140°F for the low cement level. Permanent deformation of CTB containing RAP is significantly affected by RAP content and cement level at the test temperature of 140°F. At the low cement level, temperature is also a significant variable. As the 7-day UCS reaches approximately 400 psi, permanent deformation is reduced to negligible quantities. The results of this research indicate that the inverse relationship observed between permanent deformation and 7-day UCS is statistically significant.Given that the principle conclusion from this work is that CTB with high RAP contents can perform satisfactorily as a base material when a sufficient amount of cement is applied, agencies currently specifying limits on the percentage of RAP that can be used as a part of reclaimed base material in the FDR process should reevaluate their policies and specifications with the goal of allowing the use of high RAP contents where appropriate.
175

Development of Methods to Validate the Effectiveness of Self-Healing Concrete and Microbial Nutrients

Dahal, Puskar Kumar 04 December 2022 (has links)
No description available.
176

Effects of Non-Normal Distributions on Highway Construction Acceptance Pay Factor Calculation

Uddin, Mohammad M., Mahboub, K. C., Goodrum, Paul M. 01 February 2011 (has links)
Percent within limits (PWL) is a commonly used quality control/quality assurance measure of highway pavement materials and construction, and it is a popular index for adjusting pay factors. However, PWL is based on the assumption of normal distribution of quality characteristics (e.g., concrete compressive strength and asphalt air voids). Skewness and kurtosis, which are common forms of statistical nonnormal distributions, can potentially bias the acceptance pay factor calculations. To examine this potential pay bias, simulations were performed to investigate the magnitude and the direction (overestimation or underestimation) of pay factor calculations. The study revealed that for both one-sided and two-sided specification limits, bias in pay factors not only did vary in magnitude but also reversed in direction over various ranges of PWL. These analyses showed that for a one-sided upper specification limit, on average, a positive skewness and kurtosis can underestimate the pay factor of an acceptable quality level population by 0.90%, and overestimates a rejectable quality level population by 3.8%. This leads to falsely penalizing acceptable products and rewarding bad products. The same was true for two-sided limits, which again varied based upon the percent of defective materials at the tails of the distribution. This is a very important issue because these biases in pay factors can easily upset the relative profit margins of the contractor. Furthermore, this may not be easily detectable without a detailed and sophisticated analysis as outlined in this paper. For multiple quality characteristics based pay factors, analyses showed that the combined magnitude of these biases was not linearly cumulative. Findings of the study indicate that bias in pay was higher for lots with fewer sublots and higher skewness and kurtosis.
177

Properties of cementless mortars activated by sodium silicate.

Yang, Keun-Hyeok, Song, J-K., Ashour, Ashraf, Lee, E-T. 09 1900 (has links)
yes / The present paper reports the testing of 12 alkali-activated mortars and a control ordinary portland cement (OPC) mortar. The main aim is to develop cementless binder activated by sodium silicate powder. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide (Na2O) in sodium silicate is proposed to assess the properties of alkali activated mortars, based on the hydration mechanism of alkali-activated pastes. Fly ash (FA) and ground granulated blast-furnace slag (GGBS) were employed as source materials. The ratio of Na2O-to-source material by weight for different mortars ranged between 0.038 and 0.164; as a result, alkali quality coefficient was varied from 0.0025 to 0.0365. Flow loss of fresh mortar, and shrinkage strain, compressive strength and modulus of rupture of hardened mortars were measured. The compressive strength development of alkali activated mortar was also compared with the design equations for OPC concrete specified in ACI 209 and EC 2. Test results clearly showed that the flow loss and compressive strength development of alkali-activated mortar were significantly dependent on the proposed alkali quality coefficient. In particular, a higher rate of compressive strength development achieved at early age for GGBS-based alkali-activated mortar and at long-term age for FA-based alkali-activated mortar. In addition, shrinkage strain and modulus of rupture of alkali-activated mortar were comparable to those of OPC mortar.
178

Sustitución del agregado fino por Policloruro de Vinilo en el concreto estructural

Cabrera Sanchez, Cleisler January 2023 (has links)
Este artículo es de tipo experimental, ya que se evaluó el comportamiento que tiene el concreto estructural al agregarle PVC en sustitución del agregado fino en un 20%, 30% y 40%. Se determinaron las propiedades físicas del policloruro de vinilo (PVC) y los agregados (fino y grueso), obteniendo que el peso específico del PVC es de 1.14 gr/cm3 y del agregado fino es de 2.59 gr/cm3. Se hicieron pruebas de granulometría, peso específico, contenido de humedad, resistencia a la compresión, flexión y tracción. Del mismo modo se desarrolló un concreto patrón y concretos reemplazando el agregado fino en ciertas cantidades de PVC triturado. Como resultado de los ensayos de resistencia a la compresión se tiene que para el concreto patrón la resistencia es de 242 kg/cm2, para un concreto teniendo un 20% de PVC es de 214 kg/cm2, para un 30% de PVC es de 209 kg/cm2 y para un 40% de PVC es de 153 kg/cm2. Para la prueba de resistencia a flexión a mayor porcentaje de PVC la resistencia tiende a disminuir, pero estando dentro de los límites permitidos de la norma técnica. / This article is of an experimental nature, since the behavior of structural concrete was evaluated by adding PVC to replace the fine aggregate by 20%, 30% and 40%. The physical properties of polyvinyl chloride (PVC) and the aggregates (fine and coarse) were determined, obtaining that the specific weight of PVC is 1.14 g/cm3 and that of the fine aggregate is 2.59 g/cm3. Tests were carried out on granulometry, specific weight, moisture content, compressive strength, flexural strength and tensile strength. In the same way, a standard concrete and concretes were developed by replacing the fine aggregate with certain quantities of crushed PVC. As a result of the compressive strength tests, for the standard concrete the resistance is 242 kg/cm2, for a concrete with 20% PVC it is 214 kg/cm2, for 30% PVC it is 209 kg/cm2 and for 40% PVC it is 153 kg/cm2. For the flexural strength test, the higher the percentage of PVC, the resistance tends to decrease, but is within the limits allowed by the technical standard.
179

Influence of Curing Temperature on Strength of Cement-treated Soil and Investigation of Optimum Mix Design for the Wet Method of Deep Mixing

Ju, Hwanik 15 January 2019 (has links)
The Deep Mixing Method (DMM) is a widely used, in-situ ground improvement technique that modifies and improves the engineering properties of soil by blending the soil with a cementitious binder. Laboratory specimens were prepared to represent soil improved by the wet method of deep mixing, in which the binder is delivered in the form of a cement-water slurry. To study the influence of curing temperature on the strength of the treated soil, specimens were cured in temperature-controlled water baths for the desired curing time. After curing, unconfined compressive strength (UCS) tests were conducted on the specimens. To investigate the optimum mix design for the wet method of deep mixing, UCS tests were performed to measure the strength of cured specimens, and laboratory miniature vane shear tests were conducted on uncured specimens to measure the undrained shear strength (su), which is used to represent the consistency of the mixture right after mixing. The consistency is important for field mixing because a softer mixture is easier to mix thoroughly. Based on the UCS test results, an equation that can provide a good fit to the strength data of the cured binder-treated soil is proposed. When the curing temperature was changed during curing, the UCS of the specimen cured at a low temperature and then cured at a high temperature was greater than the UCS of the specimen cured at a high temperature first. This seems to be due to different effects of elevated curing temperatures at early and late curing times on the cement reaction rates, such that elevating the curing temperature later produces a more constant reaction rate, which contributes to the reaction efficiency. An optimum mix design that minimizes the amount of binder while satisfying both a target strength of the cured mixture and a target consistency of the uncured mixture can be established by using the fitted equations for UCS and su. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases. / Master of Science / The Deep Mixing Method (DMM) is a ground improvement technique widely used to improve the strength and stiffness of loose sands, soft clays, and organic soils. The DMM is useful for both inland and coastal construction. There are two types of deep mixing. The dry method of deep mixing involves adding the binder in the form of dry powder, and the wet method of deep mixing involves mixing binder-water slurry with the soil. The strength of the cured mixture is significantly influenced by the amount of added cement and water, the curing time, and the curing temperature. This research evaluates the influence of curing temperature on the strength of cured cement-treated soil mixture. Mixture proportions and curing conditions also influence the consistency of the mixture right after mixing, which is important because it affects the amount of mixing energy necessary to thoroughly mix the binder slurry with the soil. This research developed and evaluated fitting equations that correlate the cured mixture strength and the uncured mixture consistency with mixture proportions and curing conditions. These fitting equations can then be used to select an economical and practical mix design method that minimizes the amount of binder needed to achieve both the desired cured strength and uncured consistency. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases.
180

Synthesis of portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

Chen, Irvin Allen 01 June 2010 (has links)
Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, Portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, 1.) incorporation of waste materials in portland cement synthesis, and 2.) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S–C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement. / text

Page generated in 0.1258 seconds