• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design Automation of Concrete Slab Bridges and its Application on Set-based Structural Design / Dimensioneringsautomation för betongplattbroar och konkurrensutvärdering av designmodeller

Xia, Haitian January 2021 (has links)
The presented thesis describes the development of an automation design procedure for structural design of concrete slab bridges and how it can be used to conduct a set-based structural design. The automation procedure integrated finite element modelling, analysis and structural related verification (verifications in geometry, ULS and SLS) together and realised automatic implementation of the two processes. By employing the automation design procedure and the set-based design methodology, a case study is performed based on an existed bridge. In contrast with a traditional point-based design process, the set-based structural design considers a wide range of possible design solutions, called design space, which are combinations of possible choices of different design parameters. In the case study, the design parameters like structural dimensions and reinforcement layout are considered and constitutes the design space. The design space is first narrowed by structural related constraints and further narrowed by multiple criteria which are material cost, material mass and global warming impact (equivalent CO2 emission) until reaching an optimal solution considering the three criteria. The results of the case study reveal the potential of set-based design by using the automation design procedure in obtaining optimal design solutions on the three mentioned criteria. Meanwhile, a rough time estimation shows the automatic procedure helps improve the design efficiency. It also suggests that the evaluation and decision of the finally chosen solution should be the trade-offs between material cost and environmental impact.
2

Nonlinear FEM load bearing capacity of a concrete bridge subjected to support settlements : Case of a continuous slab bridge with angled supports

Hansson, Daniel January 2013 (has links)
A nonlinear finite element analysis was performed for an existing road bridge in order to see if that could show a higher load bearing capacity, as an alternative to repairing or replacing. The regular linear analysis had shown that the bridge could not take any traffic load due to the effects from large and uneven support settlements. It is a five-span reinforced concrete bridge with a continuous slab on supports made out of rows of columns. The width-to-span ratio was around 1 and the supports were angled up to about 30°, giving rise to a complex three-dimensional behaviour, which was seen and studied in the nonlinear results. Since the bending moment was the limiting factor, the nonlinear analysis focused on that. The direct result was that the load bearing capacity was 730 kN for the traffic vehicle boogie load, B, in the ultimate limit state. This was however only for the load case tested, and several more disadvantageous vehicle positions may exist. Other aspects also became limiting, as the maximum allowed vertical deflection in the serviceability limit state was reached at 457 kN. The most restraining though, was the shear capacity from the linear analysis; 78 kN, since it was not possible to simulate that type of failure with the shell elements used in the nonlinear finite element analysis. The main aim of the thesis was nonetheless reached, since the nonlinear analysis was able to show a significant increase in load bearing capacity. A comparison was made with the settlements for the nonlinear case, to see how much influence they had on the load bearing capacity for traffic load. This was performed for both the bridge and a simple two-span beam. Both showed that there was no effect on the load bearing capacity in the ultimate limit. One thing to note was that the full settlements were applied, and with no relaxation due to creep. Another aim of the thesis was to make comments on the practical usability of the nonlinear finite element method in load bearing capacity assessments. A linear analysis was performed before the nonlinear in order to be able to determine the load case to be used in the latter. This worked well, as the strengths of the two methods could then be utilized. Convergence problems were however encountered for the nonlinear when using the regular static solver. Due to this, the dynamic explicit calculation scheme was used instead, treating the case as quasi-static. This managed to produce enough usable results. It was concluded that the nonlinear finite element method is useable for assessment calculations, but that its strengths and weaknesses must be known in order to make it an efficient method.

Page generated in 0.071 seconds