1 |
Contribuciones al análisis estocástico de la eficiencia técnica mediante métodos no paramétricosMurillo Melchor, Carmen 25 October 2002 (has links)
La exposición de las contribuciones al análisis estocástico de la eficiencia técnica de este trabajo de investigación, requiere que: en el primer capítulo se definan los conceptos básicos para la comprensión de los capítulos dos y tres. Además y para la formulación de los problemas que han dado origen a este trabajo, se presenta también en este capítulo una breve revisión de las técnicas de estimación de la eficiencia técnica y de la productividad.Dentro de estas técnicas y debido a la gran flexibilidad funcional que proporciona, nos hemos centrado en la estimación no paramétrica y más en concreto en mejorar la inferencia estadística de sus estimaciones. Es por ello que el segundo de los aspectos que se trata es la inferencia estadística que se debería de efectuar en el análisis de la envolvente de datos, habitualmente denominado con el acrónimo DEA. El análisis estadístico es sistemáticamente "olvidado" en casi todos los trabajos que aplican esta técnica, y tal y como mostramos en este apartado, según se incorpore o no inferencia estadística al DEA la interpretación de los resultados es diferente. En el tercer apartado y continuando en la línea de mejorar las herramientas de inferencia estadística en el ámbito no paramétrico, presentamos un nuevo contraste basado en simetría condicional para evaluar consistentemente la ineficiencia técnica de cada uno de los productores. Este contraste relaja algunos de los supuestos funcionales de otros contrastes anteriores y a diferencia de los contrastes basados en los momentos, es consistente con todo tipo de distribuciones de la ineficiencia. / This thesis provides in the first chapter a brief review of efficiency and productivity methods. Secondly we examine how to analyze efficiency and productivity by DEA and we apply the method for the Spanish airports in the period 1992-94. Although the time period analyzed is fairly short, we study the impact of the crisis in the productivity of Spanish airports. We apply the Malmquist index since among its other advantages this ratio allows for the decomposition of total productivity changes into different sources of variation. We also use resampling methods to gain statistical precision and the bootstrap analysis yields further evidence given that for many airports efficiency and productivity is not statistically significant.In standard deterministic frontier analysis, either DEA or FDH techniques allowed to determinate inefficient units just but taking some measure between the estimated frontier and the related output. Unfortunately, when we assume that some symmetric noise is present in the data, then the previous task becomes much harder. The problem is that in this setting noise and efficiency are not identified and therefore, without an statistical tool it is impossible to decide whether a firm is efficient or not. In the third chapter we propose a test for efficiency in a stochastic nonparametric frontier analysis. Under weak conditions on the specification of the production frontier, and the null hypothesis of efficiency, we provide the asymptotic distribution of the test statistic. Furthermore we show the test is consistent against a broad set of alternatives of inefficiency. Evidence of the good properties of the test is given by a simulation study.
|
2 |
Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordreLamothe, Vincent 11 1900 (has links)
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir
des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée.
Elle est applicable directement à des systèmes non-homogènes et non-autonomes
sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite. / The objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of
several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic
conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
|
3 |
Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordreLamothe, Vincent 11 1900 (has links)
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir
des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée.
Elle est applicable directement à des systèmes non-homogènes et non-autonomes
sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite. / The objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of
several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic
conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
|
Page generated in 0.0993 seconds