• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 78
  • 42
  • 17
  • 15
  • 11
  • 10
  • 7
  • 7
  • 7
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 478
  • 80
  • 80
  • 72
  • 71
  • 62
  • 53
  • 50
  • 49
  • 44
  • 37
  • 35
  • 35
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Synthesis Of New Mediators For Electrochemical Nad/nadh Recycling

Khalily, Mohammad Aref 01 June 2011 (has links) (PDF)
The synthesis of enantiopure compounds can be achieved by using dehydrogenases as biocatalysts. For instance, reduction reactions of prochiral compounds (ketones, aldehydes and nitriles) into chiral compounds can be achieved by dehydrogenases. These dehydrogenases are cofactor dependent where cofactor is Nicotinamide Adenin Dinucleotite having some restrictions that confines usage of dehydrogenases in organic synthesis including instability of cofactor in water and high cost. Therefore, suitable recycling methods are required and developed which are enzymatic and electrochemical. We will use an electrochemical approach for the regeneration of reduced co-factors. All active compounds / mediator, cofactor and enzyme, will be immobilized on the electrode surface of the constructed reactor surface. Therefore only educts and products will exist in the reactor medium. A gas diffusion electrode will be employed as a counter electrode / which delivers clear protons to the system. Mediator will carry electrons to the cofactor for cofactor regeneration. Then, enzyme will utilize the cofactor and change the substrates to the products in high stereoselectivity. Our aim in this project is the synthesis of mediators and suitable linkers for enzyme, cofactor and mediator immobilization. In the first part of the study, mediators were synthesized which are pentamethylcyclopentadienyl rhodium bipyridine complexes. In the second part of the study, a conductive monomer (SNS) and linker were synthesized for immobilization of the enzyme. In the last part of the study, the reaction of galactitol dehydrogenase with monomer (SNS) was achieved.
252

Conductive Polymer Nanocomposites Of Polypropylene And Organic Field Effect Transistors With Polyethylene Gate Dielectric

Kanbur, Yasin 01 June 2011 (has links) (PDF)
One of the aim of this study is to prepare conductive polymer nanocomposites of polypropylene to obtain better mechanical and electrical properties. Composite materials based on conductive fillers dispersed within insulating thermoplastic matrices have wide range of application. For this purpose, conductive polymer nanocomposites of polypropylene with nano dimentional conductive fillers like carbon black, carbon nanotube and fullerene were prepared. Their mechanical, electrical and thermal properties were investigated. Polypropylene (PP)/carbon black (CB) composites at different compositions were prepared via melt blending of PP with CB. The effect of CB content on mechanical and electrical properties was studied. Test samples were prepared by injection molding and compression molding techniques. Also, the effect of processing type on mechanical and electrical properties was investigated. Composites become semiconductive with the addition of 2 wt% CB. Polypropylene (PP) / Carbon Nanotube (CNT) and Polypropylene / Fullerene composites were prepared by melt mixing. CNT&rsquo / s and fullerenes were surface functionalized with HNO3 : H2SO4 before composite preparation. The CNT and fullerene content in the composites were varied as 0.5, 1.0, 2.0 and 3.0 % by weight. For the composites which contain surface modified CNT and fullerene four different compatibilizers were used. These were selected as TritonX-100, Poly(ethylene-block-polyethylene glycol), Maleic anhydride grafted Polypropylene and Cetramium Bromide. The effect of surface functionalization and different compatibilizer on mechanical, thermal and electrical properties were investigated. Best value of these properties were observed for the composites which were prepared with maleic anhydride grafted polypropylene and cetramium bromide. Another aim of this study is to built and characterize transistors which have polyethylene as dielectric layers. While doing this, polyethylene layer was deposited on gate electrode using vacuum evaporation system. Fullerene , Pentacene ve Indigo were used as semiconductor layer. Transistors work with low voltage and high on/off ratio were built with Aluminum oxide - PE and PE dielectrics.
253

Effect of carbon filler characteristics on the electrical properties of conductive polymer composites possessing segregated network microstructures

Prystaj, Laurissa Alia 31 July 2008 (has links)
This thesis focused on making composites consisting of a polymethylmethacrylate matrix, with various carbon fillers. The fillers that were examined were 3 different carbon blacks: N-550, N-772 and pureblack, and short multi-wall carbon nano-tubes. The carbon fillers were coated onto the polymethylmethacrylate, and compression molded in order to form a segregated microstructure. The goal of this thesis is to compare the electrical and optical properties of the composites consisting of a segregated microstructure, containing various carbon fillers. Scanning electron microscopy was used to investigate the fracture surface of the composites. Impedance Spectroscopy measured the electrical response of the material, and was used to determine the conductivity and dielectric properties of the composites and estimate the percolation threshold. The multi-wall carbon nano-tubes were found to have the lowest percolation threshold, due to their rod like structure. All of the carbon black fillers displayed similar characteristics in their conductivity and dielectric properties. As the filler content increased, the conductivity and the dielectric constant of the composites increased. Optical absorption measurements determined the amount of light that travel through the specimen. These measurements, showed that the absorbance for the carbon black sample N-550 were lower than the multi-wall carbon nano-tubes at filler contents below a phr of 0.1 The absorption of the carbon black samples was then higher than multi-wall carbon nano-tubes at phrs higher than 0.1. This was found to be related to the nano-tubes starting to form a segregated microstructure at lower filler contents than the sphere-like carbon black nano-particles.
254

Novel conductive adhesives for electronic packaging applications: a way towards economical, highly conductive, low temperature and flexible interconnects

Zhang, Rongwei 29 March 2011 (has links)
Isotropically conductive adhesives (ICAs) are promising as a lead-free interconnect material; However, ICAs have a higher resistivity compared to tin/lead solder. The higher resistivity of ICAs results from the large contact resistance between conductive fillers. Several novel approaches to engineer the interface between electrically conductive fillers were studied to develop highly conductive ICAs. Shown in this dissertation are three methodologies to reduce contact resistance: low temperature sintering, fast sintering and in-situ reduction. Furthermore, two approaches, surface modification and in-situ protection, were developed to prevent oxidation and corrosion of silver-coated copper flakes to produce low cost ICAs. The findings and insights in this dissertation significantly contribute to (1) understanding of filler-filler, filler-polymer and structure-property relationships of ICAs; (2) the structural design and formulation of high performance ICAs; and (3) the wider use of ICAs in emerging applications such as printed electronics and solar cells.
255

Conductive anodic filament reliability of fine-pitch through-vias in organic packaging substrates

Ramachandran, Koushik 13 January 2014 (has links)
This research reports for the first time conductive anodic filament reliability of copper plated-through-vias with spacing of 75 – 200 µm in thin glass fiber reinforced organic packaging substrates with advanced epoxy-based and cyclo-olefin polymer resin systems. Reliability studies were conducted in halogenated and halogen-free substrates with improved test structure designs including different conductor spacing and geometry. Accelerated test condition (temperature, humidity and DC bias voltage) was used to investigate the effect of conductor spacing and substrate material influence on insulation reliability behavior. Characterization studies included gravimetric measurement of moisture sorption, extractable ion content analysis, electrical resistance measurement, impedance spectroscopy measurement, optical microscopy and scanning electron microscopy analysis and elemental characterization using energy dispersive x-ray spectroscopy. The accelerated test results and characterization studies indicated a strong dependence of insulation failures on substrate material system, conductor spacing and geometry. This study presents advancements in the understanding of failure processes and chemical nature of failures in fine-pitch copper plated-through-vias in newly developed organic substrates and demonstrates potential methods to mitigate failures for high density organic packages.
256

Development of Cellulose-Based, Nanostructured, Conductive Paper for Biomolecular Extraction and Energy Storage Applications

Razaq, Aamir January 2011 (has links)
Conductive paper materials consisting of conductive polymers and cellulose are promising for high-tech applications (energy storage and biosciences) due to outstanding aspects of environmental friendliness, mechanical flexibility, electrical conductivity and efficient electroactive behavior. Recently, a conductive composite paper material was developed by covering the individual nanofibers of cellulose from the green algae Cladophora with a polypyrrole (PPy) layer. The PPy-Cladophora cellulose composite paper is featured with high surface area (80 m2 g-1), electronic conductivity (~2 S cm-1), thin conductive layer (~50 nm) and easily up-scalable manufacturing process. This doctoral thesis reports the development of the PPy-Cladophora composite as an electrode material in electrochemically controlled solid phase ion-exchange of biomolecules and all-polymer based energy storage devices. First, electrochemical ion-exchange properties of the PPy-Cladophora cellulose composite were investigated in electrolytes containing three different types of anions, and it was found that smaller anions (nitrate and chloride) are more readily extracted by the composite than lager anions (p-toluene sulfonate). The influence of differently sized oxidants used during polymerization on the anion extraction capacity of the composite was also studied. The composites synthesized with two different oxidizing agents, i.e. iron (III) chloride and phosphomolybdic acid (PMo), were investigated for their ability to extract anions of different sizes. It was established that the number of absorbed ions was larger for the iron (III) chloride-synthesized sample than for the PMo-synthesized sample for all four electrolytes studied. Further, PPy-Cladophora cellulose composites have shown remarkable electrochemically controlled ion extraction capacities when investigated as a solid phase extraction material for batch-wise extraction and release of DNA oligomers. In addition, composite paper was also investigated as an electrode material in the symmetric non-metal based energy storage devices. The salt and paper based energy storage devices exhibited charge capacities (38−50 mAh g−1) with reasonable cycling stability, thereby opening new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. Finally, micron-sized chopped carbon fibers (CCFs) were incorporated as additives to improve the charge-discharge rates of paper-based energy storage devices and to enhance the DNA release efficiency. The results showed the independent cell capacitances of ~60-70 F g-1 (upto current densities of 99 mA cm2) and also improved the efficiency of DNA release from 25 to 45%.
257

Thermal Processing and Microwave Processing of Mixed-Oxide Thin Films

January 2011 (has links)
abstract: Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor-assisted microwave annealing. Mixed oxide semiconductor films of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) were deposited by room-temperature RF sputtering on flexible polymer substrates. Thermal annealing in different environments - air, vacuum and oxygen was done. Electrical and optical characterization was carried out before and after annealing. The degree of reversal in the degradation in electrical properties of the thin films upon annealing in oxygen was assessed by subjecting samples to subsequent vacuum anneals. To further increase the conductivity of the IGZO films, Ag layers of various thicknesses were embedded between two IGZO layers. Optical performance of the multilayer structures was improved by susceptor-assisted microwave annealing and furnace-annealing in oxygen environment without compromising on their electrical conductivity. The post-processing of the films in different environments was used to develop an understanding of mechanisms of carrier generation, transport and optical absorption. This study establishes IGZO as a viable transparent conductor, which can be deposited at room-temperature and processed by thermal and microwave annealing to improve electrical and optical performance for applications in flexible electronics and optoelectronics. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011
258

Réalisation d'un micro-écran OLED haute luminance / Realization of a high brightness OLED micro-display

Guillamet, Sébastien 26 June 2015 (has links)
Ce travail porte sur la réalisation d'un micro-écran OLED haute luminance sur silicium. L'efficacité limitée des structures WOLED associées à des filtres colorés est un frein au développement de cette technologie pour des applications dans des dispositifs de type « see-through ». Nous proposons une approche tirant parti de l'effet de microcavité optique présent dans les écrans OLED à émission vers le haut pour générer des couleurs sans filtres. Les modulations de cavité à l'échelle du sous-pixel étant assurées par l'insertion d'oxyde transparent conducteur entre l'anode et l'OLED.L'étude offre selon un raisonnement cohérent de suivre les différentes phases de la réalisation d'un démonstrateur de ce type. Seront abordées dans la première partie les étapes technologiques de structuration de l'oxyde à l'échelle d'un sous-pixel de 16µm². Nous traiterons ensuite du développement d'un empilement OLED tandem utilisant des émetteurs fluorescent et phosphorescents. Une approche par simulation optique sera utilisée pour l'optimisation de cette architecture à un fonctionnement sur microcavité. Puis la discussion autour de la mise en commun des blocs technologiques précédents permettra d'aborder des écueils spécifiques au micro-écran OLED et de proposer des pistes de résolution. / This study focuses on the realization of a high brightness OLED micro-écran on silicon. The limited efficiency of White-OLED combined with color filters prevents the use of this technology in “see-through” applications. We propose a novel approach getting benefits from the optical micro-cavity effect in Top-Emitting OLED to generate colors without using color filters. Cavity modulations at a sub-pixel scale are realized by using a Transparent Conducting Oxide between the anode and the OLED.Following a step-by-step reasoning the work offers to follow all the phases of the realization of a prototype using this principle. In the first part, the technological steps of the processing of oxide cavities with a surface of 16µm² will be discussed. Then we will work on the development of a tandem OLED structure using both fluorescent and phosphorescent emitters optimized for micro-cavities. To this end optical simulation will be used. The two technological blocs will finally be put together to enlighten some issues specific for micro-écran technology and to give some clues to solve them.
259

Synthesis and Luminescence of Zinc Oxide Nanorods-Blended Thiopheno-Organosilicon Polymers

Tyombo, Nolukholo January 2017 (has links)
Magister Scientiae - MSc (Chemistry) / The increasing cost of fossil fuel energy production and its implication in environmental pollution and climate change created high demand for alternative and renewable sources of energy. This has led to great interest in research in the field of photovoltaic or solar cells Due to the abundance of sunlight, the technology is sustainable, non-polluting and can be implemented at places where power demand is needed, for example in rural areas. Solar cell devices that have been commercialized are currently based on silicon technology, involving the use of monocrystalline, polycrystalline and amorphous silicon. Although they produce highly efficient solar cells, the cost of Si solar cells is too high. Second generation solar cell materials such as cadmium telluride and third generation materials such as perovskites and organic polymers have been receiving much attention recently. However, they lack the efficiency of Si solar cells. This research proposes the development of high energy conservation photovoltaic cells from novel low-cost organosilicon polymers. The aim was to develop novel highly branched organosilane polymers such as poly(3-hexythiophene), polydi(thien-2-yl)dimethylsilane, poly(3-hexyl- [2,2'] bithiophenyl-5-yl)-dimethyl-thiophen-2yl-silane) as electron donors along with zinc oxide nanorod as the electron acceptor which were able to bring the efficiency of the resultant photovoltaic cell close to that of current Si solar cell. / 2021-08-31
260

Optimisation des procédés d'impression dédiés à la production de masse de composants microélectroniques / Optimization of printing processes applied to the mass production of microdevices by multilayer techniques

Faddoul, Rita 03 May 2012 (has links)
Le potentiel des procédés d’impression dans les applications électroniques sur des supports en céramique a été démontré dans ce travail. Plusieurs techniques d’impression ont été étudiées : sérigraphie, flexographie, héliogravure et jet d’encre. Les propriétés de surface de plusieurs types de céramique ont été caractérisées avant et après frittage : taille des pores, rugosité et énergie de surface. Ces analyses ont permis de sélectionner les matières premières des encres les mieux adaptées à ces supports, ainsi qu’aux procédés d’impression considérés. Des formulations aqueuses à base de particules d’argent ont été privilégiées. Les propriétés de ces encres, rhéologie et tension de surface, ont été analysées et leurs effets sur la qualité des lignes imprimées (largeur, épaisseur et rugosité) ont été évalués. Après impression, les motifs ont été frittés. Des résistivités proches de celle de l’argent ont été obtenues (2 à 12x10-8 Ohm.m). L’originalité de ce travail réside notamment dans l’utilisation d’encres sérigraphiques à base d’eau et l’impression d’encres flexographiques sur des supports en céramique. Cette étude ouvre donc des perspectives pour l’industrialisation et la production de masse de composants électroniques sur supports céramiques souples. / This work demonstrates the printing processes potential for manufacturing ceramic based electronic devices. Several printing techniques were studied: screen printing, flexography, rotogravure and inkjet. Ceramic tapes surface properties were characterised: surface pore size, roughness and surface energy. These analyses allowed the selection of the inks raw materials adapted to the substrates and the printing processes. Water-based silver inks were formulated. Inks properties, rheology and surface tension, were analysed and their effect on line properties was investigated. Printed substrates were afterwards sintered. Resistivity values close to that of bulk silver were reached (2 to 12x10-8 Ohm.m). These work novelties are mainly the formulation of water-based environmentally friendly screen printing pastes and the flexography printing of silver inks onto ceramic substrates. This study offers new perspectives for the industrialisation and the mass production of electronic components on flexible ceramic substrates.

Page generated in 0.0517 seconds