• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conductive polymers : a route for sustainability

Shahbaz Tabari, Zahra January 2009 (has links)
The concept of sustainable use of materials defines as utilizing raw material as less aspossible and introducing less toxic substances to the environment as well. Smartmaterials are one route for sustainability, as they have optimal performance in relation tomaterial composition. New technologies can be developed by using smart materials. Onearea is the development of smart textiles, meaning the incorporation of electronicfunctions in textiles. These functions can be used for human protection or monitoring ofhealth.Conductivity is a key factor in smart textiles. The aim of this report is to identifyelectrically conductivity of textile fibres in conjunction with conductive polymer(polyaniline). By applying conductive polymer (polyaniline ink) on textiles fabric andfibres it is possible to obtain conductive textile products. This project focuses on thedevelopment of conductive fibres by coating of an individual fibre or a few differenttypes of fabric with conductive polymer polyaniline dispersion in water and toluene assolvent. Various situations have been taken into consideration and investigated fordifferent concentration to different times of coating and deposit thickness. Performanceon resistivity calculation led to find optimum concentration and coating numbers anddeposit thickness. Based on the inventory, a qualitative resistivity analysis is carried outfor the purpose of identifying which combination of concentration and times of coating inthe case of woven types fibre or coating thickness in the case of non woven types offabrics as well as the types of fabrics would provide the better conductivity properties in the textile fibres and fabrics.
2

Melt Spun Electro-Conductive Polymer Composite Fibers

Soroudi, Azadeh January 2011 (has links)
One interesting approach is the development of conductive polymer composite fibers for innovative textile applications such as in sensors, actuators and electrostatic discharge. In this study, conductive polymer composite fibers were prepared using several different blends containing conductive components: a conjugated polymer (polyaniline-complex) and/or carbon nanotubes. Different factors such as processing parameters, the morphology of the initial blends and the final fibers, fiber draw ratio and material selection were studied separately to characterize their effects on the fiber properties. In binary blends of PP/polyaniline-complex, the processing conditions, the matrix viscosity and the fiber draw ratio had substantial effects on the electrical conductivity of the fibers and linearity of resistance-voltage dependence. These factors were associated with each other to create conductive pathways through maintaining an appropriate balance of fibril formation and breakage along the fiber. The blend morphology was defined as the initial size of the dispersed conductive phase (polyaniline-phase), which depended on the melt blending conditions as well as the PP matrix viscosity. Depending on the initial droplet phase size, an optimum draw ratio was necessary to obtain maximum conductivity by promoting fibril formation (sufficient stress) and preventing fibril breakage (no excess stress) to create continuous pathways of conductive phase. Ternary blend fibers of PP/PA6/polyaniline-complex illustrated at least three-phase morphology with matrix/core-shell dispersed phase style. When ternary fibers were compared to binary fibers, the former could combine better mechanical and electrical properties only at a specific draw ratio; this showed that draw ratio was a more determinant factor for the ternary fibers, as both conductivity and tensile strength depended on the formation of fibrils from the core-shell droplets of the PA6/polyaniline-complex through the polypropylene matrix. The achieved maximum conductivity so far was in the range of 10 S/cm to 10 S/cm, which for different samples were observed at different fiber draw ratios depending on the mixing conditions, the matrix viscosity or whether the fiber was a binary or ternary blend. To improve the properties, PP/polyaniline-complex blends were filled with CNTs. The CNTs and the polyaniline-complex both had an increasing effect on the crystallization temperature and the thermal stability of PP. Furthermore, the maximum conductivity was observed in samples containing both CNTs and polyaniline-complex rather than the PP with either one of the fillers. Although increasing the content of CNTs improved the conductivity in PP/CNT fibers, the ease of melt spinning, diameter uniformity and mechanical properties of fibers were adversely affected. Diameter variation of PP/CNT as-spun fibers was shown to be an indication of hidden melt-drawings that had occurred during the fiber extrusion; this could lead to variations in morphology such as increases in the insulating microcracks and the distance between the conductive agglomerates in the drawn parts of the fiber. Variations in morphology result in variations in the electrical conductivity; consequently, the conductivity of such inhomogeneous fiber is no longer its physical property, as this varies with varying size. / Thesis to be defended in public on Friday, May 20, 2011 at 10.00 at KC-salen, Kemigården 4, Göteborg, for the degree of Doctor of Philosophy.
3

Piezoelectric behaviour of woven constructions based on poly(vinylidene fluoride) bicomponent fibres

RUNDQVIST, KARIN January 2013 (has links)
During this project it was investigated how the newly developed piezoelectric PVDF bicomponent fibre behaved when integrated in different weave constructions. The possibility to integrate conductive yarns as outer electrode was studied in order to see if it was possible to create a fully textile piezoelectric sensors. The piezoelectric properties of the bicomponent fibre is given by the sheath material, which is a polymeric material known as poly(vinylidene fluoride) (PVDF). Today only piezoelectric film made by PVDF is commercially available, but with a flexible PVDF bicomponent fibre it improves the possibility to integrate piezoelectric material into a textile construction. In this study the PVDF bicomponent fibre was integrated in the warp direction into weave constructions, such as plain weave, twill and weft rib. All the woven bands included 60 PVDF bicomponent yarns, with 24 filaments in each bundle and the average width of the bands produced was 30 mm. Different conductive materials and fibres, acting as outer electrode, were coated or integrated together with the PVDF fibre and the behaviour of the PVDF fibres was analysed. All the woven samples went through corona poling with a voltage of 7 kV in 70 ⁰C for 3 min. The weave construction that gave highest piezoelectric output signal was twill with weft that has low tex. The twill construction gave a range amplitude of 1.5- 3.3 V when subjected to a dynamic strain of about 0.25% at 4 Hz. It was shown that different conductive materials influenced the PVDF fibre in different ways, due to the resistance of the material. It was also shown that it was possible to integrate piezoelectric bicomponent fibre into a textile construction and that a fully textile piezoelectric sensor could be produced by using conductive yarns as outer electrode. / Program: Masterutbildning i textilteknik,

Page generated in 0.2392 seconds