Spelling suggestions: "subject:"conductivity thermique""
1 |
Étude de la symétrie du paramètre d'ordre dans le supraconducteur à base de fer KFe[indice inférieur 2]As[indice inférieur 2]Juneau Fecteau, Alexandre January 2014 (has links)
Le supraconducteur à base de fer KFe[indice inférieur 2]As[indice inférieur 2] constitue une énigme en raison de la symétrie inusitée de son paramètre d'ordre. Contrairement aux autres supraconducteurs à base de fer, qui sont de symétrie s-wave, ce matériau semble partager la symétrie d-wave des cuprates comme YBCO. Le transport thermique est une sonde expérimentale très efficace pour déterminer la structure du paramètre d'ordre en révélant la présence de nœuds sur la surface de Fermi où le gap en énergie associé à la supraconductivité est nul. Ce mémoire présente des données de conductivité thermique obtenues dans KFe[indice inférieur 2]As[indice inférieur 2] selon les axes cristallins a et c et pour différentes orientations du champ magnétique. Les mesures couvrent un intervalle en température de 50 mK à 500 mK. La présence d'un terme résiduel linéaire k[indice inférieur 0] / T en champ nul indique la présence de nœuds. L'anisotropie de ce terme résiduel selon les directions a et c implique que les nœuds sont disposés sur des lignes verticales selon l'axe k[indice inférieur z] sur tous les feuillets de la surface de Fermi. Ce résultat suggère fortement un gap de symétrie d-wave. De plus, k[indice inférieur 0] / T n'est pas affecté par la variation du taux de diffusion dans des échantillons de puretés différentes. Cette propriété, appelée universalité de la conductivité thermique, est caractéristique des supraconducteurs de symétrie d-wave. Bien qu'une récente étude menée à l'aide de l'ARPES dans KFe[indice inférieur 2]As[indice inférieur 2] indique plutôt un gap s-wave, le calcul du comportement en champ magnétique de ce matériau à partir des valeurs du gap obtenues par l'ARPES est incompatible avec les données expérimentales de conductivité thermique. La dépendance en champ magnétique de la conductivité thermique est par ailleurs reproduite presque parfaitement par un modèle d-wave. Déterminer la symétrie du paramètre d'ordre du supraconducteur est crucial afin de comprendre le mécanisme d'appariement. À cet égard, KFe[indice inférieur 2]As[indice inférieur 2] offre la possibilité de faire le lien entre les deux grandes familles de supraconducteurs: les cuprates et les supraconducteurs à base de fer.
|
2 |
Matériaux composites à haute tenue thermique : influence de la micro-nanostructure sur les transferts moléculaires, électroniques et thermiques / Composit Materials with high thermal stability for nano-porous filter membranes : influence of micro-nanostructure on molecular, electronic and thermal transferAbidi, Sonia 18 June 2014 (has links)
Les matériaux de protection incendie sont largement utilisés pour assurer la sécurité des usagers des infrastructures. Les normes de protection incendie évoluant régulièrement, les matériaux doivent être de plus en plus performants. Ceux-ci sont généralement des mortiers constitués d’oxydes réfractaires et isolants. L’objectif de ce travail est de mettre au point un composite coupe-feu 4 h applicable par projection mais également de déterminer ses propriétés thermiques et mécaniques.Dans une première partie, cette étude reprend les différentes étapes de l’élaboration d’un matériau de protection incendie, après la présentation de la démarche qui a guidé l’élaboration de nos matériaux, nous nous sommes intéressés plus particulièrement à la composition chimique de la matrice ainsi que celle du ciment. Leurs propriétés thermiques et mécaniques ont été passées en revue.Les matières premières nécessaires à l’élaboration d’un mortier ont ensuite été sélectionnées. L’évolution, respectivement de la conductivité thermique, de la diffusivité, de la porosité, de la chaleur spécifique et des propriétés mécaniques des mortiers choisis en fonction de la nature et de la quantité de charges incorporées à la matrice a été étudiée. Une description des divers modèles analytiques et numériques permettant la représentation de la conductivité thermique et du module d’Young des matériaux a permis de développer un modèle capable de prédire le comportement thermique et mécanique des composites en fonction de la nature et de quantité de charges ajoutées.Dans une seconde partie, la cinétique de la réaction d’hydratation du plâtre afin de maîtriser les temps de prise et pour faciliter la production des projetés dans la chaîne industrielle a été étudiée. L’influence sur la cinétique d’hydratation, de la composition chimique du plâtre, de sa granulométrie et de l’ajout d’adjuvants couramment utilisés dans l’industrie plâtrière, a également été traitée.10A l’issue de cette étude, deux formulations de composites projetables ont été mises au point. / Fire protection materials are widely used to ensure the safety of users of the infrastructure. Standards of fire protection regularly operating, the materials must be more efficient. These are generally composed of refractory mortar and insulating oxides. The objective of this work is to develop a firewall composite 4 h applied by projecting but also to determine the thermal and mechanical properties.In the first part, this study describes the various stages of the development of a fire protection material, after the presentation of the approach that has guided the development of our materials, we are interested especially in the chemical composition of the matrix and that of the cement. Their thermal and mechanical properties have been reviewed.The raw materials for the preparation of mortar were selected. The evolution respectively of thermal conductivity, diffusivity, porosity, specific heat and the mechanical properties of mortars chosen according to the nature and amount of the fillers incorporated in the matrix has been studied. A description of the various analytical and numerical models for the representation of the thermal conductivity and Young's modulus of the materials led to the development of a model able to predict the thermal and mechanical behavior of composites based on the nature and amount of charges added.In a second part, the kinetics of the hydration reaction of gypsum to control setting time and to facilitate the production of the composite in the industrial chain was studied. The influence on the kinetics of hydration, of the chemical composition of the gypsum, particle size distribution and the addition of adjuvant commonly used in the plaster industry, has also been treated.At the end of this study, two formulations of composites applied by projection were developed.
|
3 |
Thermoélectricité non-conventionnelle basée sur les technologies silicium en film minces / Non-conventional thermoelectrics based on thin-film silicon technologiesHaras, Maciej 07 January 2016 (has links)
La thermoélectricité convertit fiablement l’énergie thermique en énergie électrique de manière directe, silencieusement et sans vibrations. Dans le contexte des réserves limitées en énergies fossiles, de l’effet de serre et de besoin énergétiques mondiaux en hausse, la récupération d’énergie thermique dissipée peut être une solution d'appoint. Un bon matériau thermoélectrique intègre des propriétés antagonistes : haute conductivité électrique (σ) et faible conductivité thermique (κ). La thermoélectricité conventionnelle utilise des matériaux nocifs, complexes, coûteux et incompatible avec des techniques de fabrication massive ex. CMOS rendant la thermoélectricité peu populaire sur le marché. En revanche, les matériaux CMOS, à savoir le silicium (Si), le germanium (Ge) et le silicium-germanium (SixGe1-x), sont simples, facilement approvisionnables et industriellement compatibles. Ils offrent une excellente conductivité électrique (σ) mais leur utilisation dans la thermoélectricité est limitée par une conductivité thermique (κ) trop élevée. Les progrès récents dans les domaines de micro et nano-fabrication permettent de réduire κ sans affecter σ. Cela permet de fabriquer des générateurs thermoélectriques (TEG) compatibles CMOS, tout en gardant une production massive réduisant le coût. Les simulations présentées placent Si, Ge et SixGe1-x dans une position compétitive par rapport aux matériaux thermoélectriques conventionnels, à condition de réduire substantiellement κ. Une réduction de la conductivité thermique d'un facteur 3 a été expérimentalement démontrée dans des membranes de Si intégrées au sein d'une plateforme micrométrique conçue, fabriquée et caractérisée dans le cadre de cette thèse. / Thermoelectricity converts heat into electric energy in a silent, direct, vibrationless and reliable way. In light of limited reserves in fossil fuels, increasing greenhouse effect and constantly rising worldwide demand in energy, recovering heat losses can be a solution. Good thermoelectric material integrates antagonistic properties: high crystal-like electrical (σ) and low glass-like thermal (κ) conductivities. Conventional thermoelectricity uses materials that are harmful, complex, expensive and incompatible with mainstream fabrication technologies e.g. CMOS making thermoelectricity unpopular. In constrast, CMOS materials, namely Silicon (Si), Germanium (Ge) and Silicon-Germanium (SixGe1-x), are simple, easy-to-get, cheap and industrially compatible offering a high electrical conductivity (σ). However, their usage in thermoelectricity is hindered due to a prohibitive thermal conductivity (κ). Recent progress in nano- and micro-fabrication opened new possibilities to reduce κ with minor impact on σ. This opportunity enables fabrication of CMOS compatible ThermoElectric Generators (TEGs) enabling massive production and cost reduction which can significantly popularize TEGs on the market. Our modelling approach place Si, Ge and SixGe1-x in a competitive position compared with conventional thermoelectrics providing that their high bulk κ can be substantially reduced. Within the framework of this thesis, a 3-fold size induced κ reduction in Si is experimentally obtained based on a micrometer measurement platform that has been designed, fabricated and characterized in this work.
|
4 |
Fabrication and thermal conductivity characterization of phononic engineered silicon membranes for thermoelectric applications / Fabrication et mesure de la conductivité thermique de membranes phononiques de silicium pour des applications thermoélectriquesLacatena, Valeria 01 June 2016 (has links)
La thermoélectricité rencontre un intérêt croissant ces dernières années comme source d'énergie alternative pour l’alimentation de dispositifs micro- et nano- électroniques. Les matériaux thermoélectriques transforment par effet Seebeck une différence de température en énergie électrique utile. Dans les dispositifs thermoélectriques, l’énergie perdue en général sous forme de chaleur résiduelle peut ainsi être recyclée en utilisant les gradients de température existants. L'efficacité thermoélectrique dépend des propriétés électroniques du matériau et de sa conductivité thermique κ. Le silicium présente une très bonne conductivité électrique et un coefficient Seebeck prometteur, mais sa conductivité thermique phononique limite fortement son potentiel pour des applications thermoélectriques, du moins sous forme de matériau massif. Par contre, la nanostructuration du silicium en couches minces, et a fortiori la fabrication de cristaux phononiques permet de réduire fortement la conductivité thermique. Dans ce travail, des simulations de dynamique moléculaire sont réalisées pour confirmer cette stratégie et permettre la définition d'un design optimal de membranes perforées. De plus, le travail expérimental montre différentes méthodologies de fabrication de membranes phononiques de silicium intégrées dans une plate-forme de métrologie. Plusieurs techniques de caractérisation (Electrothermique, Raman et Microscopie à sonde thermique) ont ensuite été utilisées pour déterminer la conductivité thermique des membranes. Une réduction considérable de κ est obtenue pour le silicium, permettant d’envisager l’intégration de ces membranes dans un convertisseur thermoélectrique. / In the last twenty years, the continuous seek for alternative energy sources to power micro- and nano-electronic devices has marked the rise of interest toward thermoelectricity. Thermoelectric materials can turn directly, by Seebeck effect, the temperature difference into useful electric power. The energy lost as waste heat can be re-used as a power source. It is known that, to improve thermoelectric efficiency, an important role is played by material’s electronic properties and its thermal conductivity. Silicon exhibits very good electrical conductivity and Seebeck parameter, but its lattice thermal conductivity represents the bigger obstacle for thermoelectric applications, preventing its direct integration as bulk material. It has been demonstrated that nanostructuring silicon in thin films enables the reduction of thermal conductivity down to one order of magnitude. Furthermore, a supplementary decrease of thermal conductivity is possible by periodical patterning of the silicon thin film in a photonic-like way, creating Phononic Crystals (PnCs). In our work molecular dynamics simulations are performed to confirm the trend envisaged and allow the definition of an optimal design for the patterned membranes. Moreover, our experimental work lists different fabrication methodologies of silicon phononic engineered membranes integrate into a metrology platform. Several characterization techniques (Electrothermal , Raman thermometry, Scanning Thermal Microscopy) are used to determine the membranes thermal conductivity. A considerable reduction of κ is obtained for silicon, paving the way for a prospective integration of those membranes into a thermoelectric converter.
|
5 |
Le matériau polymère : de l'isolant au conducteur thermiquePoulaert, Bernard 01 January 1987 (has links)
Le matériaux polymère : de l'isolant au conducteur thermique.
|
6 |
Le matériau polymère : de l'isolant au conducteur thermiquePoulaert, Bernard 01 January 1987 (has links)
Le matériaux polymère : de l'isolant au conducteur thermique.
|
7 |
Évolution des quasiparticules nodales du cuprate supraconducteur YBa[indice inférieur 2]Cu[indice inférieur 3]O[indice inférieur y] en conductivité thermiqueRené De Cotret, Samuel January 2013 (has links)
Ce mémoire présente des mesures de conductivité thermique sur les supraconducteurs YBCO et Tl-2201 afin de statuer sur la présence possible d'un point critique quantique (QCP) dans le diagramme de phase de cuprates. Ce point critique quantique serait à l'origine de la reconstruction de la surface de Fermi, d'un large cylindre de trous en de petites poches de trous et d'électrons. La conductivité thermique dans le régime T [arrow right] 0 permet d'extraire une quantité purement électronique liée aux vitesses de Fermi et du gap, au noeud. Une discontinuité dans cette quantité pourrait signaler la traversée du dopage critique qui reconstruit la surface de Fermi. Plusieurs sondes expérimentales distinguent une transition de phase ou un crossover à T * à température finie. D'autres sondes mettent en évidence une transition de phase sous l'effet d'un champ magnétique. La présence ou non de cet ordre, à température et champ magnétique nul questionne la communauté depuis plusieurs années. Dans cette étude, nous détectons une variation brusque de ?0 /T à p = 0.18 dans YBCO et à p = 0.20 dans Tl-2201. Ces sauts sont interprétés comme un signe de la transition à température nulle et sont en faveur d'un QCP. Le manque de données d'un même matériau à ces dopages ne permet pas de valider hors de tout doute l'existence d'un point critique quantique. Le modèle théorique YRZ décrit aussi bien les données de conductivité thermique. Des pistes de travaux expérimentaux à poursuivre sont proposées pour déterminer la présence ou non du QCP de façon franche.
|
8 |
Investigation de l'anisotropie du gap supraconducteur dans les composés Ba(Fe[indices inférieurs 1-x]Co[indice inférieur x])[indice inférieur 2]As[indice inférieur 2], Ba[indices inférieurs 1-x]K[indice inférieur x]Fe[indice inférieur 2]As[indice inférieur 2], LiFeAs et Fe[indices inférieurs 1-[delta]]Te[indices inférieurs 1-x]Se[indice inférieur x]Reid, Jean-Philippe January 2012 (has links)
La structure du gap supraconducteur et sa modulation sont intimement liées au potentiel d'interaction responsable de l'appariement des électrons d'un supraconducteur. Ainsi, l'étude de la structure du gap-SC et de sa modulation permet de faire la lumière sur la nature du mécanisme d'appariement des électrons. À cet égard, les résultats expérimentaux des supraconducteurs à base de fer ne cadrent pas dans un seul ensemble, ce qui est en opposition au gap-SC universel des cuprates. Dans ce qui suit, nous présenterons une étude systématique du gap-SC pour plusieurs pnictides. En effet, en utilisant la conductivité thermique, une sonde directionnelle du gap-SC, nous avons été en mesure de révéler la structure du gap-SC pour les composés suivants : Ba[indice inférieur 1-x]K[indice inférieur x]Fe[indice inférieur 2]As[indice inférieur 2], Ba(Fe[indice inférieur 1-x]Co[indice inférieur x])[indice inférieur 2]As[indice inférieur 2], LiFeAs et Fe[indice inférieur 1-[delta]] Te[indice inférieur 1-x]Se[indice inférieur x]. L'étude de ces quatre composés, de trois différentes familles structurales, a pu établir un tableau partiel mais très exhaustif de la structure du gap-SC de pnictides. En effet, tel qu'illustré dans cette thèse, ces quatre composés ne possèdent aucun noeud dans leur structure du gap-SC à dopage optimal. Toutefois, à une concentration différente de celle optimale pour les composés K-Ba122 et Co-Ba122, des noeuds apparaissent sur la surface de Fermi, aux extrémités du dôme supraconducteur. Ceci suggère fortement que, pour ces composés, la présence de noeuds sur la surface de Fermi est nuisible à la phase supraconductrice.
|
9 |
Étude du gap supraconducteur du FeSe par la conductivité thermiqueBourgeois-Hope, Patrick January 2017 (has links)
Le séléniure de fer, FeSe, est un matériau prometteur qui attire beaucoup d'attention depuis qu'il a décroché le record de la température critique la plus élevée chez les supraconducteurs à base fer. L'absence d'une phase magnétique à proximité de sa phase supraconductrice cause un questionnement sur la nature du mécanisme d'appariement des électrons dans ce supraconducteur. La symétrie avec laquelle ce mécanisme opère peut être déterminée en identifiant la structure et la symétrie du gap supraconducteur du FeSe. Plusieurs études du gap ont été menées, mais elles n'ont pas permis d'arriver à un consensus. Certaines mesures détectent des noeuds dans le gap supraconducteur tandis que d'autres rapportent un gap non nodal. L'incapacité à réconcilier les données existantes est en partie due au manque de mesures effectuées sur des monocristaux propres étant capables de résoudre des excitations à très basse énergie. Ce mémoire présente une étude du gap supraconducteur du FeSe utilisant la mesure de la conductivité thermique dans la limite où la température tend vers zéro comme sonde. Dans ce régime de température, il a été possible d'examiner les excitations à très faible énergie de l'état supraconducteur à l'aide d'un champ magnétique finement ajusté. De cette manière, un portrait très détaillé de la dispersion en énergie des quasiparticules a été dressé. Nous ne détectons pas de quasiparticules à énergie nulle et excluons donc la présence de noeuds sur le gap supraconducteur. Nous observons un comportement de supraconducteur à deux bandes, suggérant que les deux poches de la surface de Fermi ont des gaps différents dont les amplitudes diffèrent par un facteur 10. De plus, la grandeur du plus petit de ces deux gaps varie lorsque le niveau de désordre du matériau change, ce qui suggère que le petit gap est anisotrope. Cette dernière observation permet de réconcilier les études antérieures puisqu'une anisotropie du gap peut engendrer des noeuds accidentels sur le gap si le niveau de désordre du matériau est suffisament bas. Quelques études très récentes, parues en même temps que les résultats présentés ici, corroborent le scénario proposé et sont présentées à la fin du mémoire.
|
10 |
Caractérisation des propriétés thermo-physiques et d’échanges de chaleur des nanofluides à base de nanotubes de carbone / Characterization of thermophysical properties and heat exchange of carbon nanotubes based nanofluidsHalelfadl, Salma 23 June 2014 (has links)
Les transferts de chaleur constituent la base de nombreux processus industriels qui sont présents dans notre vie quotidienne. L’intensification de ces échanges et l’amélioration du rendement sont devenues aujourd’hui une problématique majeure dans le monde industriel, des organismes de réglementation mais aussi de la société dans son ensemble, qui prend conscience de l’épuisement progressif des ressources énergétiques et qui se soucie de l’avenir en matière énergétique. Face à ces enjeux énergétiques et environnementaux, Le défi technologique réside dans le développement de nouveaux processus pour une meilleure gestion de l’énergie. Ce travail de thèse s’inscrit dans ce cadre, et concerne particulièrement les problèmes liés à l’intensification des échanges thermiques dans les échangeurs de chaleur. Les améliorations des échanges thermiques dites ‘passives’ sont une voie déjà largement élaborée et atteignent leurs limites. De nouvelles stratégies d’optimisation doivent donc être étudiées. Une de ces stratégies consiste à améliorer les propriétés thermiques des fluides caloporteurs utilisés dans les systèmes thermiques, notamment dans les échangeurs de chaleur. Des progrès importants en chimie ont permis dès la fin des années 90 de synthétiser des particules de taille nanométrique, qui, dispersées dans un liquide porteur, constituent des nanofluides. Leur synthèse répond au besoin d’améliorer les propriétés thermiques des fluides caloporteurs en y insérant une phase solide de conductivité thermique très élevée. Le fil directeur de ce travail consiste donc à caractériser de manière approfondie le comportement thermique et rhéologique des nanofluides à base de nanotubes de carbone NTC utilisés tout au long de ce travail afin de quantifier les principaux paramètres influençant leurs propriétés thermo-physiques et les phénomènes physiques régissant l’intensification des transferts thermiques induits par ces nanofluides. Une analyse des travaux de recherche antérieurs a été menée dans le but de s’affranchir des différents paramètres qui peuvent influencer le comportement thermique et rhéologique des nanofluides dont on citera les paramètres liés à la composition des nanofluides (fraction volumique des NTC, type de surfactant, rapport d’aspect des NTC), la température, le fluide de base… Suite à cette étude, nous avons mené une étude expérimentale sur les propriétés thermo-physiques des nanofluides testés (conductivité thermique, viscosité dynamique, masse volumique) et sur les performances thermiques dans un échangeur de chaleur. Nous avons présenté également une analyse des résultats de façon à étudier l’influence des paramètres évoqués ci-dessus. Les résultats obtenus sont comparés et discutés vis-à-vis des modèles classiques existants, en proposant des améliorations et des interprétations selon les tendances obtenues. Les résultats prometteurs de cette étude sont très encourageants et montrent que l’utilisation des nanofluides à base de nanotubes de carbone offre clairement une amélioration des performances thermiques par rapport aux fluides de base classiques. Les nanofluides à base de NTC peuvent constituer ainsi un débouché prometteur des transferts thermiques et présentent de bonnes perspectives et développement. / Heat transfer is one of the most important industrial processes in our daily lives. Nowadays, the intensification of the heat transfer and the improving of the energy efficiency have become a major problem in industry, regulatory agencies, and also the society that becomes conscious of the progressive exhaustion of the world’s energy resources and cares about the future of energy. Due to these energy and environmental issues, the technological challenge is to develop new processes for better energy management. This work fits in that context and applies particularly the problems associated to the improvements of heat exchanger’s energy efficiency. The conventional methods for increasing the heat transfer in heat exchangers have already been extensively explored and have reached their objective limits. There is therefore an urgent need for new strategies with improved performances. The novel concept of improving the thermal properties of the working fluids used in thermal system, especially in heat exchangers, has been proposed as a means of meeting these challenges. The innovative concept of nanofluids heat transfer fluids consisting of suspended of nanoparticles with very high thermal conductivities has been proposed for these challenges. The aim of this work is therefore to characterize profoundly the thermal and the rheological behavior of nanofluids containing carbon nanotubes CNTs used throughout of this work. This is in order to quantify the main parameters influencing their thermophysical properties and physical phenomena governing the intensification of heat transfer induced by these nanofluids. An analysis of previous researches has been conducted for the purpose of establishing various parameters that may influence the thermal and rheological behavior of nanofluids, which including the parameters related to the composition of nanofluids (volume fraction of CNTs, type of surfactant, aspect ratio of CNTs), the temperature, the base fluid... Following this study, experiments have been carried out on the thermal physical properties of tested nanofluids (thermal conductivity, dynamic viscosity, density) and thermal performances in a heat exchanger. Analyses of the results have been presented in order to study the influence of the abovementioned parameters. The results obtained are compared and discussed vis-à-vis the existing conventional models, suggesting improvements and interpretations according to the trends obtained. The promising results of this study are very encouraging and show that the use of nanofluids containing carbon nanotubes clearly improved the thermal performances compared to the conventional base fluids. The CNT-based nanofluids can thus be a promising candidate for heat transfer and presents good perspective and development.
|
Page generated in 0.0982 seconds