Spelling suggestions: "subject:"supraconducteurs à base dde fear"" "subject:"supraconducteurs à base dee fear""
1 |
Changement universel de la symétrie d'appariement dans les supraconducteurs KFe[indice inférieur 2]As[indice inférieur 2], RbFe[indice inférieur 2]As[indice inférieur 2] et CsFe[indice inférieur 2]As[indice inférieur 2]Ouellet, Alexandre January 2016 (has links)
Lors d'études précédentes, il a été observé que la température critique de la transition supraconductrice des matériaux KFe$_2$As$_2$ et CsFe$_2$As$_2$ diminue en fonction d'une pression hydrostatique pour ensuite remonter après avoir dépassé une certaine pression critique (17,5 et 14 kbar). La mesure du coefficient de Hall à température nulle, ainsi que des mesures des oscillations de de Haas-van Alphen, indique que ce changement brusque de comportement n'est pas dû à un changement dans la surface de Fermi. Afin d'expliquer ce phénomène, l'hypothèse apportée est celle d'un changement de la symétrie d'appariement des paires de Cooper. Une transition d'une symétrie de type d à une de type s est supportée par l'ajout d'impuretés, des mesures de conductivité thermique et l'évolution en pression de la résistivité.
Dans le cadre de ce mémoire, la résistivité, l'effet Hall et le champ critique supérieur ont été mesurés pour le matériau RbFe$_2$As$_2$ en fonction d'une pression hydrostatique, complétant ainsi le portrait pour trois matériaux de même structure. Comme pour les deux premiers matériaux, une remontée de la température critique à une certaine pression critique (11 kbar) est observée, sans conséquence notable sur l'effet Hall. De plus, les données de champ critique supérieur, analysées conjointement à des données déjà prises pour KFe$_2$As$_2$, montrent un saut de la quantité $\frac{1}{T_c}\left(-\frac{\partial H_{c2}}{\partial T}\right)_{T_c}$ à la pression critique, ce qui indique un changement de la structure du gap supraconducteur et consolide le scénario d'un changement de la symétrie d'appariement des paires de Cooper.
|
2 |
Investigation de l'anisotropie du gap supraconducteur dans les composés Ba(Fe[indices inférieurs 1-x]Co[indice inférieur x])[indice inférieur 2]As[indice inférieur 2], Ba[indices inférieurs 1-x]K[indice inférieur x]Fe[indice inférieur 2]As[indice inférieur 2], LiFeAs et Fe[indices inférieurs 1-[delta]]Te[indices inférieurs 1-x]Se[indice inférieur x]Reid, Jean-Philippe January 2012 (has links)
La structure du gap supraconducteur et sa modulation sont intimement liées au potentiel d'interaction responsable de l'appariement des électrons d'un supraconducteur. Ainsi, l'étude de la structure du gap-SC et de sa modulation permet de faire la lumière sur la nature du mécanisme d'appariement des électrons. À cet égard, les résultats expérimentaux des supraconducteurs à base de fer ne cadrent pas dans un seul ensemble, ce qui est en opposition au gap-SC universel des cuprates. Dans ce qui suit, nous présenterons une étude systématique du gap-SC pour plusieurs pnictides. En effet, en utilisant la conductivité thermique, une sonde directionnelle du gap-SC, nous avons été en mesure de révéler la structure du gap-SC pour les composés suivants : Ba[indice inférieur 1-x]K[indice inférieur x]Fe[indice inférieur 2]As[indice inférieur 2], Ba(Fe[indice inférieur 1-x]Co[indice inférieur x])[indice inférieur 2]As[indice inférieur 2], LiFeAs et Fe[indice inférieur 1-[delta]] Te[indice inférieur 1-x]Se[indice inférieur x]. L'étude de ces quatre composés, de trois différentes familles structurales, a pu établir un tableau partiel mais très exhaustif de la structure du gap-SC de pnictides. En effet, tel qu'illustré dans cette thèse, ces quatre composés ne possèdent aucun noeud dans leur structure du gap-SC à dopage optimal. Toutefois, à une concentration différente de celle optimale pour les composés K-Ba122 et Co-Ba122, des noeuds apparaissent sur la surface de Fermi, aux extrémités du dôme supraconducteur. Ceci suggère fortement que, pour ces composés, la présence de noeuds sur la surface de Fermi est nuisible à la phase supraconductrice.
|
3 |
Étude du gap supraconducteur du FeSe par la conductivité thermiqueBourgeois-Hope, Patrick January 2017 (has links)
Le séléniure de fer, FeSe, est un matériau prometteur qui attire beaucoup d'attention depuis qu'il a décroché le record de la température critique la plus élevée chez les supraconducteurs à base fer. L'absence d'une phase magnétique à proximité de sa phase supraconductrice cause un questionnement sur la nature du mécanisme d'appariement des électrons dans ce supraconducteur. La symétrie avec laquelle ce mécanisme opère peut être déterminée en identifiant la structure et la symétrie du gap supraconducteur du FeSe. Plusieurs études du gap ont été menées, mais elles n'ont pas permis d'arriver à un consensus. Certaines mesures détectent des noeuds dans le gap supraconducteur tandis que d'autres rapportent un gap non nodal. L'incapacité à réconcilier les données existantes est en partie due au manque de mesures effectuées sur des monocristaux propres étant capables de résoudre des excitations à très basse énergie. Ce mémoire présente une étude du gap supraconducteur du FeSe utilisant la mesure de la conductivité thermique dans la limite où la température tend vers zéro comme sonde. Dans ce régime de température, il a été possible d'examiner les excitations à très faible énergie de l'état supraconducteur à l'aide d'un champ magnétique finement ajusté. De cette manière, un portrait très détaillé de la dispersion en énergie des quasiparticules a été dressé. Nous ne détectons pas de quasiparticules à énergie nulle et excluons donc la présence de noeuds sur le gap supraconducteur. Nous observons un comportement de supraconducteur à deux bandes, suggérant que les deux poches de la surface de Fermi ont des gaps différents dont les amplitudes diffèrent par un facteur 10. De plus, la grandeur du plus petit de ces deux gaps varie lorsque le niveau de désordre du matériau change, ce qui suggère que le petit gap est anisotrope. Cette dernière observation permet de réconcilier les études antérieures puisqu'une anisotropie du gap peut engendrer des noeuds accidentels sur le gap si le niveau de désordre du matériau est suffisament bas. Quelques études très récentes, parues en même temps que les résultats présentés ici, corroborent le scénario proposé et sont présentées à la fin du mémoire.
|
4 |
Etude des propriétés optiques du système supraconducteur Ba122 à base de fer par spectroscopie infrarougeDai, Yaomin 08 December 2011 (has links) (PDF)
Lorsque des atomes sont assemblés dans un solide, des nouveaux phénomènes surgissent en raison de l'interaction forte entre noyaux et électrons. Par exemple, dans des matériaux anisotropes de faible dimension ou dans des m étaux à forte densité d' états au niveau de Fermi, de densité de spin (SDW) ou de charge (CDW) peuvent se former à basse température. La supraconductivité est présente dans certains matériaux quand il refroidit en dessous d'une température critique. Toutes ces phases peuvent apparaître d'une façon isolée ou coexister avec une autre. Et, dans ce cas, une interaction forte ou de la compétition peut exister entre ces phases. Le mécanisme de formation de ces phases et les relations entre elles sont toujours le centre d'intérêt quand elles sont découvertes dans un nouveau matériau. Ba1−xKxFe2As2 et Ba(Fe1−xCox)2As2 ont été découverts comme une nouvelle famille de supraconducteurs à haute Tc. C'est le système supraconducteur Ba122 à base de fer. Le composé parent de cette famille est BaFe2As2 qui a une transition d'onde de densité de spin à environ 138 K. Lorsque le dopage du composé parent est fait par des trous [Ba1−xKxFe2As2] ou par des électrons [Ba(Fe1−xCox)2As2], le magnétisme est supprimé et la supraconductivité apparaît. Dans une gamme de dopage considérablement large, la phase SDW et la supraconductivité coexistent. Dans ce cas, la symétrie du gap supraconducteur les relations entre les ordres coexistants produisent des phénomènes et des comportements nouveaux. Dans cette thèse, nous avons étudié les propriétés optiques des supraconducteurs à base de fer dopés trous [Ba1−xKxFe2As2] et électrons [Ba(Fe1−xCox)2As2]. Dans les composés dopés optimalement par K ou Co, nous avons trouvé différentes réponses dans la conductivité optique de basse énergie. En comparant les propriétés optiques et les sites de dopage de ces deux échantillons dopés de fa con optimale, nous avons fourni des preuves solides pour une symétrie d'appariement s± dans le système Ba122. Dans le composé sous-dopé Ba0.6K0.4Fe2As2 nous avons observé, en plus du gap SDW et de celui supraconducteur, un plus petit gap à plus faible énergie. Nous avons étudié la dépendance en température et dopage des trois gaps. Avec cela, combinée à une analyse de poids spectral, nous avons conclu que ce gap nouveau partage les mêmes états électroniques que le condensat supraconducteurs. Nous avons interprété ce gap par un scénario de précurseur de la phase supraconductrice. En revanche, la transition SDW diminue les états électroniques disponibles pour le condensat supraconducteur, agissant comme un ordre en compétition à la supraconductivité.
|
5 |
Diagramme de phase et corrélations électroniques dans les supraconducteurs à base de Fer : une étude par RMNTexier, Yoan 09 July 2013 (has links) (PDF)
La découverte en 2008 de supraconductivité à relativement haute température (Tc,max = 56K) dans les pnictures de Fer a ravivé les questions fondamentales sur l'origine et la nature de la supraconductivité posés par les supraconducteurs non conventionnels. En particulier, la présence d'une phase antiferromagnétique à proximité de celle supraconductrice dans leur diagramme de phase pose la question du lien entre magnétisme et supraconductivité. Ces supraconducteurs à base de Fe présentent un diagramme de phase générique, mais quelques exceptions remettent en question une description qui se voudrait universelle. Nous avons choisi d'étudier ces cas particuliers grâce à une sonde locale, la résonance magnétique nucléaire (RMN). Nos observations nous ont non seulement permis de comprendre la raison de ces exceptions, mais aussi de s'en servir pour mieux sonder les corrélations magnétiques dans ces matériaux, un ingrédient clé pour la compréhension de la supraconductivité. Premier sujet, la coexistence de supraconductivité et de magnétisme : celle-ci a été observée dans la plupart des supraconducteurs à base de Fer de façon homogène ou inhomogène, mais toujours pour des états magnétiques à faible TN et faibles moments en accord avec des descriptions itinérantes à faibles corrélations. Pourtant un nouveau composé au Sélénium est venu remettre en cause ces conclusions en présentant une apparente coexistence homogène entre une forte supraconductivité macroscopique (Tc ≈ 30K) et un très fort antiferromagnétisme (TN ≈ 600K, moments magnétiques de valeur élevée de 3.3µB). Cette observation suggère donc une description ici plutôt en terme d'isolants de Mott contrairement aux autres supraconducteurs à base de Fer. Nos mesures RMN permettent de montrer en fait l'existence d'une séparation de phase et de statuer sur la stœchiométrie et les propriétés électroniques des différentes phases, pour finalement réconcilier ce composé et les autres familles. Deuxième exception : dans la famille archétype BaFe₂As₂, tous les dopages sur site Fer ou Arsenic ou même l'application de pression mènent à la supraconductivité, sauf dans le cas du dopage au Manganèse ou au Chrome en site Fer, qui ne provoquent pas l'apparition de la supraconductivité. Nos mesures RMN nous ont permis de sonder la nature de la transition magnétique, mais aussi l'état métallique de ces composés substitués. Nous montrons en particulier que le trou supplémentaire du Manganèse substitué à la place du Fer reste en fait localisé sur son site et se manifeste alors par un moment magnétique localisé. Cette étude du dopage par le Manganèse ouvre la voie à l'idée d'utiliser le Manganèse en faible concentration comme source de moments localisés qui polarisent magnétiquement leur environnement. Cette polarisation permet en effet de caractériser la nature même des corrélations de spin. Nous avons donc utilisé la RMN ainsi que la magnétométrie-SQUID pour mesurer cette polarisation dans des composés supraconducteurs pour sonder les corrélations de spins de ces systèmes. Nous concluons que ces corrélations sont plutôt faibles et indépendantes de la température dans les composés dopés en électrons.
|
6 |
Fermions lourds et métaux de Hund dans les supraconducteurs à base de fer / Heavy fermions and Hund's metals in iron-based superconductorsVillar Arribi, Pablo 03 December 2018 (has links)
Matériaux dans lesquels les électrons responsables des propriétés de basse énergie son soumis à fortes corrélations sont aujourd'hui très étudiés à la recherche de nouvelles phases émergentes aux propriétés surprenantes et/ou utiles.Les supraconducteurs à base de fer (IBSC) sont maintenant considérés dans cette classe de composés. En utilissant des techniques multi-corps nécessaires pour le traitement théorique de ces corrélations (théorie du champ moyen de spin esclave - SSMFT et théorie du champ moyen dynamique - DMFT - en conjonction avec la théorie du fonctionnelle de la densité, DFT), dans cette thèse, j'etudie plusieurs propriétés d'IBSC.D’abord, j'analyse les composés très dopés de la famille de IBSC, qui montrent expérimentalement certains comportements typiques des ``fermions lourds'', des composés typiquement des terres rares ou des actinides, où des électrons extrêmement corrélés coexistent avec des électrons moins corrélés. En particulier je me concentre sur la chaleur spécifique et le pouvoir thermoélectrique et je montre comment ces propriétés peuvent être comprises dans le paradigme récemment développé ``métaux de Hund''. En effet, l’échange intra-atomique (le ``couplage de Hund'') est responsable de ces matériaux à éléments métal de transition en montrant la physique des fermions lourds. Je montre aussi que les caractéristiques typiquement fermions-lourds du spectre d’excitation, connues car les singularités de Van Hove sont bien capturées par notre modélisation au sein de DFT+SSMFT. J'utilise ensuite DMFT dans un modèle afin d'étudier l'impact direct des singularités de Van Hove sur la force des corrélations.Dans une seconde partie, je montre comment FeSe, le IBSC actuellement le plus étudié, se trouve également dans une phase métal de Hund, mais il est amené à la frontière de cette phase par la pression. Cette frontière est liée à une augmentation de la compressibilité électronique qui est positivement corrélée à l’augmentation de la supraconductivité trouvée dans les expériences.Je réalise une étude analogue sur le détenteur du record pour la température supraconductrice critique la plus élevée, la monocouche FeSe où je trouve également une compressibilité augmentée. Cela appuie la récente proposition selon laquelle la frontière du métal de Hund favorise la supraconductivité à haute température.Enfin, j'étudie la nature du magnétisme dans une autre famille de IBSC, les germanides de fer. J'explore différents ordres magnétiques possibles avec des simulations DFT et leur concurrence (ce qui peut en principe favoriser la supraconductivité) dans plusieurs composés où différents substitutions sont appliquées au composé parent YFe2Ge2. J'étudie également l'effet de la pression chimique sur ce composé. / Materials where the electrons responsible for the low-energy properties experience strong correlations are today very investigated in search of emerging new phases with surprising and/or useful properties. Iron-based superconductors (IBSC) are now considered in this class of compounds. Using the many-body techniques necessary for the theoretical treatment of these correlations (slave-spin mean field theory - SSMFT- and dynamical mean field theory - DMFT- in conjunction with density functional theory, DFT), in this thesis I address several properties of IBSC.First I analyze the very hole-doped compounds in the IBSC family, that show experimentally some behaviors typical of the so-called “heavy fermions”, compounds typically of rare earth or actinides, where extremely correlated electrons coexist with others less correlated. In particular I focus on the specific heat and the thermoelectric power and show how these properties can be understood in the recently developed paradigm of “Hund’s metals”. Indeed the intra-atomic exchange (the “Hund’s coupling”) is responsible for these materials of transition metal elements showing heavy-fermionic physics. I show also that typical heavy-fermionic features of the excitation spectrum, known as Van Hove singularities are well captured by our modelization within DFT+SSMFT. I then use DMFT in a model in order to study the direct impact of the Van Hove singularities on the strength of correlations.In a second part I show how FeSe, the presently most studied IBSC, is also in a Hund’s metal phase, but it is brought to the frontier of this phase by pressure. This frontier is connected to an enhancement of the electronic compressibility which correlates positively then with the enhancement of superconductivity found in experiments. I perform an analogous study on the record holder for the highest critical superconducting temperature, the monolayer FeSe where I also find an enhanced compressibility. This supports the recent proposal that the frontier of a Hund's metal favors high-temperature superconductivity.Finally I study the nature of magnetism in another family of IBSC, the iron-germanides. I explore different possible magnetic orders with DFT simulations and study their competition (which can in principle favor superconductivity) in several compounds where different chemical substitutions are applied to the parent compound YFe2Ge2. I also study the effect of chemical pressure on this compound.
|
7 |
Diagramme de phase et corrélations électroniques dans les supraconducteurs à base de Fer : une étude par RMN / NMR study of phase diagram and electronic correlations in Iron based superconductorsTexier, Yoan 09 July 2013 (has links)
La découverte en 2008 de supraconductivité à relativement haute température (Tc,max = 56K) dans les pnictures de Fer a ravivé les questions fondamentales sur l’origine et la nature de la supraconductivité posés par les supraconducteurs non conventionnels. En particulier, la présence d’une phase antiferromagnétique à proximité de celle supraconductrice dans leur diagramme de phase pose la question du lien entre magnétisme et supraconductivité. Ces supraconducteurs à base de Fe présentent un diagramme de phase générique, mais quelques exceptions remettent en question une description qui se voudrait universelle. Nous avons choisi d’étudier ces cas particuliers grâce à une sonde locale, la résonance magnétique nucléaire (RMN). Nos observations nous ont non seulement permis de comprendre la raison de ces exceptions, mais aussi de s’en servir pour mieux sonder les corrélations magnétiques dans ces matériaux, un ingrédient clé pour la compréhension de la supraconductivité. Premier sujet, la coexistence de supraconductivité et de magnétisme : celle-ci a été observée dans la plupart des supraconducteurs à base de Fer de façon homogène ou inhomogène, mais toujours pour des états magnétiques à faible TN et faibles moments en accord avec des descriptions itinérantes à faibles corrélations. Pourtant un nouveau composé au Sélénium est venu remettre en cause ces conclusions en présentant une apparente coexistence homogène entre une forte supraconductivité macroscopique (Tc ≈ 30K) et un très fort antiferromagnétisme (TN ≈ 600K, moments magnétiques de valeur élevée de 3.3µB). Cette observation suggère donc une description ici plutôt en terme d’isolants de Mott contrairement aux autres supraconducteurs à base de Fer. Nos mesures RMN permettent de montrer en fait l’existence d’une séparation de phase et de statuer sur la stœchiométrie et les propriétés électroniques des différentes phases, pour finalement réconcilier ce composé et les autres familles. Deuxième exception : dans la famille archétype BaFe₂As₂, tous les dopages sur site Fer ou Arsenic ou même l’application de pression mènent à la supraconductivité, sauf dans le cas du dopage au Manganèse ou au Chrome en site Fer, qui ne provoquent pas l’apparition de la supraconductivité. Nos mesures RMN nous ont permis de sonder la nature de la transition magnétique, mais aussi l’état métallique de ces composés substitués. Nous montrons en particulier que le trou supplémentaire du Manganèse substitué à la place du Fer reste en fait localisé sur son site et se manifeste alors par un moment magnétique localisé. Cette étude du dopage par le Manganèse ouvre la voie à l’idée d’utiliser le Manganèse en faible concentration comme source de moments localisés qui polarisent magnétiquement leur environnement. Cette polarisation permet en effet de caractériser la nature même des corrélations de spin. Nous avons donc utilisé la RMN ainsi que la magnétométrie-SQUID pour mesurer cette polarisation dans des composés supraconducteurs pour sonder les corrélations de spins de ces systèmes. Nous concluons que ces corrélations sont plutôt faibles et indépendantes de la température dans les composés dopés en électrons. / The discovery in 2008 of superconductivity at a rather high temperature in the iron pnictides (Tc,max = 56K) has revived the fundamental questions about the existence and the nature of the superconducting phase raised by the unconventional superconductors. In particular, the existence of an antiferromagnetic phase that is in vicinity of the superconducting phase in the phase diagram raises questions about the link between magnetism and superconductivity. These Iron based superconductors have a generic phase diagram, but some exceptions are questioning a description that would be universal. We chose to study these cases through a local probe, nuclear magnetic resonance (NMR). Our observations have not only allowed us to understand the reasons for these exceptions, but also be used to better probe the magnetic correlations in these materials, a key ingredient for the understanding of superconductivity. First subject, the coexistence of superconductivity and magnetism: it was observed in most superconductors based on iron homogeneously or inhomogeneously, but always for magnetic states at low TN and low magnetic moments in accordance with nesting descriptions with low correlations. Yet a new compound Selenium came to question these conclusions with an apparent homogeneous coexistence between a strong macroscopic superconductivity (Tc ≈ 30K) and a very strong antiferromagnetism (TN ≈ 600K, magnetic moments of high value of 3.3μB). This observation suggests a description rather in terms of Mott insulators, unlike other iron-based superconductors. Our NMR measurements show the existence of an effective phase separation and determine the stoichiometry and the electronic properties of the different phases, eventually reconciling this compound and other families. Second exception : in the archetype family BaFe₂As₂, all iron or arsenic on-site doping or even application of pressure leads to superconductivity, except in the case of Chrome or Manganese doping in Iron site, which does not cause the onset of superconductivity. Our NMR measurements have allowed us to probe the nature of the magnetic transition, but also the metallic state of the substituted compounds. We show in particular that the extra hole Manganese substituted in place of the iron is actually located on its atom and then manifested by a localized magnetic moment. This study of Manganese doping opens up the idea of using Manganese in low concentrations as a source of localized moments which magnetically polarize their environment. This polarization makes it possible to characterize the nature of the spin correlations. We used NMR and SQUID magnetometry, to measure the polarization in superconducting compounds to probe the spin correlations of these systems. We conclude that these correlations are rather low and independent of temperature in electrons doped compounds.
|
Page generated in 0.0972 seconds