621 |
Humidity dependent impedance of Zn(_x)Co(_2-x)GeO(_4)Hales, Debbie January 1999 (has links)
Zn(_x)Co(_2-x)GeO(_4) materials were prepared and the variation in structure with composition was investigated using XED, SEM and EDX analysis. Limited series of solid solution were identified at both ends of the compositional range. D C electrical measurements were carried out to characterize the variation in the resistivity of the materials with humidity. Resistivities of the order of 10(^8) Ω m were observed in dry conditions, decreasing by 4 to 5 orders of magnitude with increasing humidity. Resistivity was not found to vary greatly with composition. Resistivity was temperature dependent, increasing by 1 to 2 orders of magnitude for a 70 C decrease in temperature. A C impedance measurements were performed to gain an understanding of the mechanism of the humidity dependent conductivity. At low frequencies impedance was found to be independent of frequency and humidity dependent. At high frequencies impedance was found to be inversely proportional to frequency and independent of humidity. The break point frequency was also humidity dependent and an increase in the impedance indicated inductive-type behaviour. Complex plane representation of the impedance gave a distorted semicircle at high frequencies and a low frequency tail. At high humidities the tail appears as a straight line, inclined at approximately 45 . At medium levels of humidity a distinctive loop is apparent at the intersection between the semicircle and the tail, corresponding to the inductive behaviour indicated at the break point frequency. The impedance response was modelled by an equivalent circuit consisting of various ideal and constant phase (dispersive) elements. The proposed mechanism of humidity-dependent conductivity is due to chemisorption and physisorption of water vapour from the atmosphere at the surface of the material, It is suggested that conduction occurs by hopping of protons between cheraisorbed hydroxyl groups at low humidities, by diffusion of H(_3)O(^+) ions between the hydroxyl groups at intermediate humidities and by hopping of protons between physisorbed H(_3)O(^+) ions (Grotthus Chain reaction) at high humidities.
|
622 |
Steps towards silicon optoelectronicsStarovoytov, Artem January 1999 (has links)
This thesis addresses the issue of a potential future microelectronics technology, namely the possibility of utilising the optical properties of nanocrystalline silicon for optoelectronic circuits. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem for microelectronic development, explains the basics of Integrated Optoelectronics, introduces porous silicon as a new light-emitting material and gives a brief review of other competing light-emitting material systems currently under investigation. Examples of existing porous silicon devices are given. Chapter 2 reviews the basic physics relevant to the subject of this thesis and informs on the present situation in this field of research, including both experimental and theoretical knowledge gained up-to-date. The chapter provides the necessary background for correct interpretation of the results reported in Chapter 3 and for a realistic decision on the direction for future work. Chapter 3 describes my own experimental and computational results within the framework of the subject, obtained at De Montfort University. These include: onestep preparation of laterally structured porous silicon with photoluminescence and microscopy characterisation, Raman spectroscopy of porous silicon, a polarisation study of the photoluminescence from porous silicon, computer simulations of the conductivity of two-component media and of laser focused atomic deposition for nanostructure fabrication. Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising optical properties of nanocrystalline silicon in silicon-based electronics, and it reports new results within the framework of the subject. The main conclusion is that due to its promising optoelectronic properties nanocrystalline silicon remains a prospective competitor for the cheapest and fastest microelectronics of the next century.
|
623 |
Liquid moulding of carbon nanoparticle filled compositesCosta, Elisabete Fernandez Reia Da January 2011 (has links)
This thesis focuses on the incorporation of carbon nanoparticles within continuous fibre reinforcements by liquid composite moulding processes, in order to provide enhanced electrical and delamination properties to the multiscale composites. The mechanisms controlling the flow and filtration of these nanoparticles during liquid composite moulding are studied, in order to develop a predictive 1-D model which allows design of the processing of these composite materials. Five different carbon nanoparticles at 0.25 wt% loading, three unmodified and one surface modified carbon nanotube systems and one carbon nanofibre system, were utilised to modify a commercial two-component epoxy resin utilised to impregnate carbon and glass reinforcements at high fibre volume fraction by resin transfer moulding. The dispersion of the nanofillers in the prepolymer was carried out by ultrasonication, high shear mixing or triple roll milling or a combination of the three. Electrical conductivity measurements of the carbon nanoparticle liquid suspensions during dispersion, alongside optical microscopy imaging and rheological analysis of these allowed the selection of the concentration of nanofiller and the appropriate dispersion technique for each nanoparticle system. The resin transfer moulding process required adaptation to incorporate the dispersion and modify degassing steps, especially when utilising unmodified carbon nanoparticles suspensions, due to their higher viscosity and tendency to be filtered. Nanoparticle filtration was identified by electrical conductivity measurements and microscopy of specimens cut at increasing distances from the inlet. Cake filtration was observed for some of the unmodified systems, whereas deep bed filtration occurred for the surface modified CNT material. Property graded composites were obtained due to filtration, where the average electrical conductivity of the carbon and glass composites produced increased by a factor of two or one order of magnitude respectively. The effect of filler on the delamination properties of the carbon fibre composites was tested under mode I. The results do not show a statistically significant improvement of delamination resistance with the presence of nanoparticles, although localised toughening mechanisms such as nanoparticle pull-out and crack bridging as well as inelastic deformation have been observed on fracture surfaces. Particle filtration and gradients in concentration resulted in non-linear flow behaviour. An 1-D analytical and a finite difference model, based on Darcy’s law accompanied by particle mass conservation and filtration kinetics were developed to describe the flow and filtration of carbon nanoparticle filled thermosets. The numerical model describes the non-linear problem by incorporating material property update laws, i.e. permeability, porosity and viscosity variations on concentration of retained and suspended particles with location and time. The finite difference model is consistent and converges to the analytical solution. The range of applicability of the analytical model is limited to lower filtration coefficients and shorter filling lengths, providing an approximate solution for through thickness infusion; whereas the numerical model presents a solution outside this range, i.e. in-plane filling processes. These models allow process design, with specified carbon nanoparticle concentration distributions achieved via modifying the nanofiller loading at the inlet as a function of time.
|
624 |
Development of advanced nanosized molecularly inprinted polymers via surface-initiatied 'living' radical polymerisationIvanova-Mitseva, Petya K. January 2012 (has links)
Surface-initiated photo-iniferter mediated controlled polymerisation was used as a technique for the development of advanced and smart materials. Molecularly imprinted polymer (MIP) shell nanoparticles (NPs) were synthesised in this way from PAMAM dendrimers, used as a graftable core, in 2 min irradiation time. Surprisingly the so-synthetised NPs were around 200 nm and had a cubic shape. Cont/d.
|
625 |
Computer assisted molecular simulations of ferroelectric liquid crystals : prediction of structural and electronic propertiesTodd, Stephen Mark January 1998 (has links)
No description available.
|
626 |
Studying the conduction mechanism of stabilised zirconias by means of molecular dynamics simulationsMarrocchelli, Dario January 2010 (has links)
Stabilised zirconias have a remarkable variety of technological and commercial applications, e.g., thermal barrier coatings, gas sensors, solid oxide fuel cells, ceramic knives and even fashion jewelry. This amazing versatility seems to originate from the creation of atomic defects (oxide ion vacancies) in the zirconia crystal. Indeed, these vacancies, and their interactions with other vacancies or cations, dramatically affect the structural, thermal, mechanical and electrical properties of zirconia. This thesis is concerned with the study of the role of the vacancy interactions on the conducting properties of these materials. This study was performed by using realistic, first-principles based molecular dynamics simulations. The first system studied in this thesis is Zr0:5 0:5xY0:5+0:25xNb0:25xO7. This has a fixed number of vacancies across the series but its conductivity changes by almost two orders of magnitude as a function of x. For this reason, Zr0:5 0:5xY0:5+0:25xNb0:25xO7 represents an ideal test-bed for the role of the cation species on the defect interactions and therefore on the ionic conductivity of these materials. Realistic inter-atomic potentials for Zr0:5 0:5xY0:5+0:25xNb0:25xO7 were developed on a purely first-principles basis. The observed trends of decreasing conductivity and increasing disorder with increasing Nb5+ content were successfully reproduced. These trends were traced to the influences of the cation charges and relative sizes and their effect on vacancy ordering by carrying out additional calculations in which, for instance, the charges of the cations were equalised. The effects of cation ordering were considered as well and their influence on the conductivity understood. The second part of this thesis deals with Sc2O3–doped (ScSZ) and Y2O3–doped (YSZ) zirconias. These systems are of great academic and technological interest as they find use in solid oxide fuel cells. Inter-atomic potentials were parametrised and used to predict the structural and conducting properties of these materials, which were found to agree very well with the experimental evidence. The simulations were then used to study the role of the vacancy interactions on the conducting properties of these materials. Two factors were found to influence the ionic conductivity in these materials: cation-vacancy and vacancy-vacancy interactions. The former is responsible for the difference in conductivity observed between YSZ and ScSZ. Vacancies, in fact, prefer to bind to the smaller Zr4+ ions in YSZ whereas there is not a strong preference in the case of ScSZ, since the cations have similar sizes in this case. This effect is observed at temperatures as high as T = 1500 K. Finally, it was found that vacancies tend to order so that they can minimise their mutual interaction and that this ordering tendency is what ultimately is responsible for the observed anomalous decrease of the ionic conductivity with increasing dopant concentration. The consequences of such a behaviour are discussed.
|
627 |
Mathematical modeling of rail gunPratikakis, Nikolaos 09 1900 (has links)
The exit velocity of the launch object along with the values of electric and thermal conductivity at the interfaces between the rails and the armature of a rail gun are critical issues. This thesis, using finite element method, estimates the former by solving the proper multiphysics governing equations, along with exploiting the contact theory between flat surfaces. A parametric analysis in the vicinity of the standard deviation of the normalized distance between the references planes of the rough surfaces was made for a variety of materials and textures at the interfaces. Furthermore, the amount of ohmic heat that is generated due to the application of the electric potential and the resistance of materials is estimated along with the average temperature at the interfaces. Finally, thermal stresses were also studied.
|
628 |
Rotational magneto-acousto-electric tomography (MAET): theory and experimental validationKunyansky, L, Ingram, C P, Witte, R S 21 April 2017 (has links)
We present a novel two-dimensional (2D) MAET scanner, with a rotating object of interest and two fixed pairs of electrodes. Such an acquisition scheme, with our novel reconstruction techniques, recovers the boundaries of the regions of constant conductivity uniformly well, regardless of their orientation. We also present a general image reconstruction algorithm for the 2D MAET in a circular chamber with point-like electrodes immersed into the saline surrounding the object. An alternative linearized reconstruction procedure is developed, suitable for recovering the material interfaces (boundaries) when a non-ideal piezoelectric transducer is used for acoustic excitation. The work of the scanner and the linearized reconstruction algorithm is demonstrated using several phantoms made of high-contrast materials and a biological sample.
|
629 |
Mätning av hydraulisk konduktivitet med Lewis metod : En utvärdering av tillförlitligheten och användbarheten hos en enkel metod för mätning i olika jordarterEriksson, Daniel January 2016 (has links)
The purpose of this study was to evaluate Lewis (2016) simple method to determine hydraulic conductivity in soil samples. This was conducted by comparing Lewis method to a slug-test, Guelph permeameter and calculations from grain size analysis in order to find out if the method is a reliable source for measuring hydraulic conductivity. Other parameters to compare is time consumption, cost effectiveness and area of use. Four different samples were used in the testing, a sand, two tills and pyrite ash (which is a rest product from manufacturing sulfite pulp). The results indicated that measurements in the homogenic sand all methods was in a good range of each other, while in the more heterogenic till the slug-test and Lewis method was close and the calculations from grainsize analysis was much lower. Only grainsize analysis was performed on the pyrite ash and the results was similar to Lewis method. This study shows that Lewis method works well as a reliable source for K measurements and is less time consuming than all the other methods. The material required for the method can be obtained in a hardware store.
|
630 |
Effects of heterogeneity distribution on hillslope stability during rainfallsCai, Jing-sen, Yan, E-chuan, Yeh, Tian-chyi Jim, Zha, Yuan-yuan 04 1900 (has links)
The objective of this study was to investigate the spatial relationship between the most likely distribution of saturated hydraulic conductivity (K-s) and the observed pressure head (P) distribution within a hillslope. The cross-correlation analysis method was used to investigate the effects of the variance of lnK(s), spatial structure anisotropy of lnK(s), and vertical infiltration flux (q) on P at some selected locations within the hillslope. The cross-correlation analysis shows that, in the unsaturated region with a uniform flux boundary, the dominant correlation between P and Ks is negative and mainly occurs around the observation location of P. A relatively high P value is located in a relatively low Ks zone, while a relatively low P value is located in a relatively high Ks zone. Generally speaking, P is positively correlated with q/Ks at the same location in the unsaturated region. In the saturated region, the spatial distribution of K-s can significantly affect the position and shape of the phreatic surface. We therefore conclude that heterogeneity can cause some parts of the hillslope to be sensitive to external hydraulic stimuli (e.g., rainfall and reservoir level change), and other parts of the hillslope to be insensitive. This is crucial to explaining why slopes with similar geometries would show different responses to the same hydraulic stimuli, which is significant to hillslope stability analysis. (C) 2016 Hohai University. Production and hosting by Elsevier B.V.
|
Page generated in 0.0974 seconds