Spelling suggestions: "subject:"con,"" "subject:"code,""
641 |
Discharge Coefficient Performance of Venturi, Standard Concentric Orifice Plate, V-Cone, and Wedge Flow Meters at Small Reynolds NumbersHollingshead, Colter L. 01 May 2011 (has links)
The relationship between the Reynolds number (Re) and discharge coefficients (C) was investigated through differential pressure flow meters. The focus of the study was directed toward very small Reynolds numbers commonly associated with pipeline transportation of viscous fluids. There is currently a relatively small amount of research that has been performed in this area for the Venturi, standard orifice plate, V-cone, and wedge flow meters. The Computational Fluid Dynamics (CFD) program FLUENT© was used to perform the research, while GAMBIT© was used as the preprocessing tool for the flow meter models created. Heavy oil and water were used separately as the two flowing fluids to obtain a wide range of Reynolds numbers with high precision. Multiple models were used with varying characteristics, such as pipe size and meter geometry, to obtain a better understanding of the C vs. Re relationship. All of the simulated numerical models were compared to physical data to determine the accuracy of the models. The study indicates that the various discharge coefficients decrease rapidly as the Reynolds number approaches 1 for each of the flow meters; however, the Reynolds number range in which the discharge coefficients were constant varied with meter design. The standard orifice plate does not follow the general trend in the discharge coefficient curve that the other flow meters do; instead as the Re decreases, the C value increases to a maximum before sharply dropping off. Several graphs demonstrating the varying relationships and outcomes are presented. The primary focus of this research was to obtain further understanding of discharge coefficient performance versus Reynolds number for differential producing flow meters at very small Reynolds numbers.
|
642 |
Iterative Enhancement of Non-Exact Reconstruction in Cone Beam CT / Iterativ förbättring av icke-exakt rekonstruktion för konstråletomografiSunnegårdh, Johan January 2004 (has links)
<p>Contemporary algorithms employed for reconstruction of 3D volumes from helical cone beam projections are so called non-exact algorithms. This means that the reconstructed volumes will contain artifacts irrespective of the detector resolution and number of projections angles employed in the process.</p><p>It has been proposed that these artifacts can be suppressed using an iterative scheme which comprises computation of projections from the already reconstructed volume as well as the non-exact reconstruction itself.</p><p>The purpose of the present work is to examine if the iterative scheme can be applied to the non-exact reconstruction method PI-original in order to improve the reconstruction result. An important part in this implementation is a careful design of the projection operator, as a poorly designed projection operator may result in aliasing and/or other artifacts in the reconstruction result. Since the projection data is truncated, special care must be taken along the boundaries of the detector. Three different ways of handling this interpolation problem is proposed and examined.</p><p>The results show that artifacts caused by the PI-original method can indeed be reduced by the iterative scheme. However, each iteration requires at least three times more processing time than the initial reconstruction, which may call for certain compromises, smartness and/or parallelization in the innermost loops. Furthermore, at higher cone angles certain types of artifacts seem to grow by each iteration instead of being suppressed.</p>
|
643 |
The Audacity of Faith: A Study of Barack Obama's Religious Views and How they could Shape his United States PresidencyRoss, Zachary 23 April 2010 (has links)
During the 2008 Presidential election, questions concerning Barack Obama’s religious views arose. Specifically, the controversy surrounding Obama’s former pastor, Jeremiah Wright, caused some people to wonder how Wright’s theology may have influenced Obama. This project investigates Obama’s religious views and examines several forces, including Wright, which influenced his theological perspective. Wright bases his theological perspective on the works of James Cone, a significant figure in Black Liberation Theology and a mentor to Wright. This thesis compares and contrasts Obama’s religious perspective with that of James Cone.
|
644 |
Iterative Enhancement of Non-Exact Reconstruction in Cone Beam CT / Iterativ förbättring av icke-exakt rekonstruktion för konstråletomografiSunnegårdh, Johan January 2004 (has links)
Contemporary algorithms employed for reconstruction of 3D volumes from helical cone beam projections are so called non-exact algorithms. This means that the reconstructed volumes will contain artifacts irrespective of the detector resolution and number of projections angles employed in the process. It has been proposed that these artifacts can be suppressed using an iterative scheme which comprises computation of projections from the already reconstructed volume as well as the non-exact reconstruction itself. The purpose of the present work is to examine if the iterative scheme can be applied to the non-exact reconstruction method PI-original in order to improve the reconstruction result. An important part in this implementation is a careful design of the projection operator, as a poorly designed projection operator may result in aliasing and/or other artifacts in the reconstruction result. Since the projection data is truncated, special care must be taken along the boundaries of the detector. Three different ways of handling this interpolation problem is proposed and examined. The results show that artifacts caused by the PI-original method can indeed be reduced by the iterative scheme. However, each iteration requires at least three times more processing time than the initial reconstruction, which may call for certain compromises, smartness and/or parallelization in the innermost loops. Furthermore, at higher cone angles certain types of artifacts seem to grow by each iteration instead of being suppressed.
|
645 |
Curvature-Induced Energy Band Tilting in Finite-Length Carbon NanotubesVikström, Anton January 2011 (has links)
The near-Fermi-energy energy band structure of carbon nanotubes is given by cross-sections of the graphene Dirac cones near the K and K' points. Using second-order perturbation theory and a nearest-neighbor approximated tight-binding model, curvature-induced corrections to the graphene-based effective model are derived. In addition to the already known Dirac-point shift, the curvature is shown to cause not only a warping of the Dirac cone, tantamount to a slight compression and a correction to the overall Fermi velocity, but also a tilting of the Dirac cone and the associated nanotube energy bands. This tilting results in a velocity asymmetry for left- and right-going waves and two different kinds of excitations, allowing for varying degeneracy in the same sample. Previous experiments have shown irregularities in the level degeneracy and should be reconsidered in this context. / Energibandstrukturen för kolnanorör ges av tvärsnitt av grafens Dirac-koner nära K- och K'-punkterna. Medelst andra ordningens störningsteori och en tight-binding-modell med närmaste-granne-approximationen härleds de kurvaturinducerade korrektionerna till den grafenbaserade effektiva modellen. Utöver det redan kända Dirac-punkt-skiftet så visas kurvaturen orsaka inte bara en förvrängning av Dirac-konen, liktydigt med en mild kompression och en korrektion till den övergripande fermihastigheten, utan också en lutning av Dirac-konen och de associerade nanorörsenergibanden. Denna lutning resulterar i en hastighetsasymmetri för vänster- och högergående vågor och två olika sorters excitationer, vilket tillåter för varierande degeneration i samma prov. Tidigare experiment har visat oregelbundenheter i nivådegenerationen och bör omprövas i denna kontext.
|
646 |
OPTIMIZATION OF IMAGE GUIDED RADIATION THERAPY USING LIMITED ANGLE PROJECTIONSRen, Lei January 2009 (has links)
<p>Digital tomosynthesis (DTS) is a quasi-three-dimensional (3D) imaging technique which reconstructs images from a limited angle of cone-beam projections with shorter acquisition time, lower imaging dose, and less mechanical constraint than full cone-beam CT (CBCT). However, DTS images reconstructed by the conventional filtered back projection method have low plane-to-plane resolution, and they do not provide full volumetric information for target localization due to the limited angle of the DTS acquisition. </p><p>This dissertation presents the optimization and clinical implementation of image guided radiation therapy using limited-angle projections.</p><p>A hybrid multiresolution rigid-body registration technique was developed to automatically register reference DTS images with on-board DTS images to guide patient positioning in radiation therapy. This hybrid registration technique uses a faster but less accurate static method to achieve an initial registration, followed by a slower but more accurate adaptive method to fine tune the registration. A multiresolution scheme is employed in the registration to further improve the registration accuracy, robustness and efficiency. Normalized mutual information is selected as the criterion for the similarity measure, and the downhill simplex method is used as the search engine. This technique was tested using image data both from an anthropomorphic chest phantom and from head-and-neck cancer patients. The effects of the scan angle and the region-of-interest size on the registration accuracy and robustness were investigated. The average capture ranges in single-axis simulations with a 44° scan angle and a large ROI covering the entire DTS volume were between -31 and +34 deg for rotations and between -89 and +78 mm for translations in the phantom study, and between -38 and +38 deg for rotations and between -58 and +65 mm for translations in the patient study.</p><p>Additionally, a novel limited-angle CBCT estimation method using a deformation field map was developed to optimally estimate volumetric information of organ deformation for soft tissue alignment in image guided radiation therapy. The deformation field map is solved by using prior information, a deformation model, and new projection data. Patients' previous CBCT data are used as the prior information, and the new patient volume to be estimated is considered as a deformation of the prior patient volume. The deformation field is solved by minimizing bending energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. The new patient CBCT volume is then obtained by deforming the prior patient CBCT volume according to the solution to the deformation field. The method was tested for different scan angles in 2D and 3D cases using simulated and real projections of a Shepp-Logan phantom, liver, prostate and head-and-neck patient data. Hardware acceleration and multiresolution scheme are used to accelerate the 3D estimation process. The accuracy of the estimation was evaluated by comparing organ volume, similarity and pixel value differences between limited-angle CBCT and full-rotation CBCT images. Results showed that the respiratory motion in the liver patient, rectum volume change in the prostate patient, and the weight loss and airway volume change in the head-and-neck patient were accurately estimated in the 60° CBCT images. This new estimation method is able to optimally estimate the volumetric information using 60-degree projection images. It is both technically and clinically feasible for image-guidance in radiation therapy.</p> / Dissertation
|
647 |
Compressed Sensing Based Image Restoration Algorithm with Prior Information: Software and Hardware Implementations for Image Guided TherapyJian, Yuchuan January 2012 (has links)
<p>Based on the compressed sensing theorem, we present the integrated software and hardware platform for developing a total-variation based image restoration algorithm by applying prior image information and free-form deformation fields for image guided therapy. The core algorithm we developed solves the image restoration problem for handling missing structures in one image set with prior information, and it enhances the quality of the image and the anatomical information of the volume of the on-board computed tomographic (CT) with limited-angle projections. Through the use of the algorithm, prior anatomical CT scans were used to provide additional information to help reduce radiation doses associated with the improved quality of the image volume produced by on-board Cone-Beam CT, thus reducing the total radiation doses that patients receive and removing distortion artifacts in 3D Digital Tomosynthesis (DTS) and 4D-DTS. The proposed restoration algorithm enables the enhanced resolution of temporal image and provides more anatomical information than conventional reconstructed images.</p><p>The performance of the algorithm was determined and evaluated by two built-in parameters in the algorithm, i.e., B-spline resolution and the regularization factor. These parameters can be adjusted to meet different requirements in different imaging applications. Adjustments also can determine the flexibility and accuracy during the restoration of images. Preliminary results have been generated to evaluate the image similarity and deformation effect for phantoms and real patient's case using shifting deformation window. We incorporated a graphics processing unit (GPU) and visualization interface into the calculation platform, as the acceleration tools for medical image processing and analysis. By combining the imaging algorithm with a GPU implementation, we can make the restoration calculation within a reasonable time to enable real-time on-board visualization, and the platform potentially can be applied to solve complicated, clinical-imaging algorithms.</p> / Dissertation
|
648 |
Enhanced Integration of Shear Wave Velocity Profiling in Direct-Push Site Characterization SystemsMcGillivray, Alexander Vamie 13 November 2007 (has links)
Enhanced Integration of Shear Wave Velocity Profiling in Direct-Push Site Characterization Systems
Alexander V. McGillivray
370 Pages
Directed by Dr. Paul W. Mayne
Shear wave velocity (VS) is a fundamental property of soils directly related to the shear stiffness at small-strains. Therefore, VS should be a routine measurement made during everyday site characterization. There are several lab and field methods for measuring VS, but the seismic piezocone penetration test (SCPTu) and the seismic dilatometer test (SDMT) are the most efficient means for profiling the small-strain stiffness in addition to evaluating large-strain strength, as well as providing evaluations of the geostratigraphy, stress state, and permeability, all within a single sounding.
Although the CPT and DMT have been in use for over three decades in the USA, they are only recently becoming commonplace on small-, medium-, and large-size projects as more organizations begin to realize their benefits. Regrettably, the SCPTu and the SDMT are lagging slightly behind their non-seismic counterparts in popularity, in part because the geophysics component of the tests has not been updated during the 25 years since the tests were envisioned. The VS measurement component is inefficient and not cost effective for routine use. The purpose of this research is to remove the barriers to seismic testing during direct-push site characterization with SCPTu and SDMT.
A continuous-push seismic system has been developed to improve the integration of VS measurements with SCPTu and SDMT, allowing VS to be measured during penetration without stopping the progress of the probe. A new type of portable automated seismic source, given the name RotoSeis, was created to generate repeated hammer strikes at regularly spaced time intervals. A true-interval biaxial seismic probe and an automated data acquisition system were also developed to capture the shear waves. By not limiting VS measurement to pauses in penetration during rod breaks, it is possible to make overlapping VS interval measurements. This new method, termed frequent-interval, increases the depth resolution of the VS profile to be more compatible with the depth intervals of the near-continuous non-seismic measurements of the SCPTu and the SDMT.
|
649 |
Identification of Concrete Incompatibilities Using Cement Paste RheologyJang, Se Hoon 2009 May 1900 (has links)
The complex interaction between cement and chemical/mineral admixtures in concrete mixtures sometimes leads to unpredictable concrete performance in the field which is generally defined as concrete incompatibilities. Cement paste rheology measurements instead of traditional workability tests (i.e., slump cone test) can have great potential in detecting those incompatibilities in concrete before the concrete is placed, which can, in turn, avoid related workability problems and setting time as well as heat evolution abnormalities. The objectives of the present study were to examine the applicability of the dynamic shear rheometer (DSR) to measure cement paste rheology, and to identify cement and mineral/chemical admixture incompatibilities, based on the determined rheological parameters.
The DSR was modified and optimized for cement paste rheology measurements. Two different modes of operations (i.e., static and dynamic methods) with the modified DSR were investigated to measure representative rheological parameters as well as to identify cement and chemical/mineral admixture incompatibility. The conventional plastic viscosity and yield stress are measured in static mode and storage modulus curve, as a function of time, is measured in dynamic mode. The rate of change of plastic viscosity (RPV) as another static rheological parameter and the modeled magnitude parameter ?, from the dynamic rheological method, showed great potentialities as acceptance criteria to identify incompatible mixtures. The heat of hydration data from isothermal conduction calorimeter tests and setting time results for the studied mixtures have strongly supported the rheology based observations as supporting tools. Based on the main tests results, the acceptance criteria were set up using the rheological parameters in accordance with heat of hydration data. This will ultimately help material suppliers, concrete producers, and other users to detect problematic combinations of concrete ingredients before a given concrete mixture is placed.
|
650 |
A Reactionary Obstacle Avoidance Algorithm For Autonomous VehiclesYucel, Gizem 01 June 2012 (has links) (PDF)
This thesis focuses on the development of guidance algorithms in order to avoid a
prescribed obstacle primarily using the Collision Cone Method (CCM). The
Collision Cone Method is a geometric approach to obstacle avoidance, which forms
an avoidance zone around the obstacles for the vehicle to pass the obstacle around
this zone. The method is reactive as it helps to avoid the pop-up obstacles as well as
the known obstacles and local as it passes the obstacles and continue to the
prescribed trajectory. The algorithm is first developed for a 2D (planar) avoidance
in 3D environment and then extended for 3D scenarios. The algorithm is formed for
the optimized CCM as well. The avoidance zone radius and velocity are optimized
using constraint optimization, Lagrange multipliers with Karush-Kuhn-Tucker
conditions and direct experimentation.
|
Page generated in 0.0334 seconds