Spelling suggestions: "subject:"con angle"" "subject:"code angle""
1 |
Generation of Globoidal Cam Surfaces with Conical RollersLin, Sheng-yang 07 February 2006 (has links)
This thesis presents a geometry design method to generate the surfaces of the globoidal cam with the conical roller follower. Based on the trace of the rigid body and the theory of differential geometry, the conjugate surfaces can be the offset surfaces of the ruled surface.
With different roller¡¦s axial height, its radius and the meshing vector also be changed. For this reason, the contact points on the outward roller are hard to find. To overcome this problem, we propose the triangular graph with meshing angle, it can present the vector quantity caused from the motion angle. We replace it into the procedures of the rigid body transformation method to derive the cam surfaces with the conical roller follower. Furthermore, two models with modified sine and constant velocity motion curves are generated and analyzed.
|
2 |
Analysis of Flow in a 3D Chamber and a 2D Spray Nozzle to Approximate the Exiting Jet Free SurfaceHong, Chin Tung 08 November 2004 (has links)
The purpose of this investigation is to analyze the flow pattern of cooling fluids in the 3D "twister-effect" mixing chamber and to approximate the free surface behaviors exiting the 2D spray nozzle. The cone angle and free surface height located at the end of the free surface are two significant factors to determine the spraying area on a heated plane. This process is a reasonable representation of many industrial cooling application. The whole system consists of 4 inlet tubes connected to the top of the mixing chamber, and the spray nozzle is located under the chamber. Four different refrigerants, like FC-72, FC-77, FC-87 and methanol were used for the turbulent flow simulations. According to different fluid properties, the cone angle, free surface, pressure drop and Reynolds number can be investigated at different flow rates. First, at a certain volumetric flow rates, the velocities in x, y, z directions were found on the positive x-axis (0 degree), y-axis (90 degrees), negative x-axis (180 degrees) and y-axis (270 degrees) at 8.0 x 10-4m below the top of chamber. After the transformations, the interpolated and averaged radial, circumferential and axial velocities were used in the 2D nozzle simulations. Finally, the cone angle, the radial locations of the free surface and the pressure drop were obtained in each scenario. As the results, higher volumetric flow rate produced higher free surface height and cone angle. Also, FC-87 created the highest free surface height and cone angle among all four working fluids in both volumetric flow rates. It means that FC-87 can produce the largest spraying area on the heated surface. Fluctuation, spinning and eddy circulation can be found in the velocity plot because of the turbulent flow syndromes. When comparing two different nozzle designs, it was found that the nozzle without mixing chamber gave a larger cone angle and free surface height. Alternatively, the design in this investigation produced a relatively narrow jet concentrated to the stagnation zone.
|
3 |
Analysis of Flow in a Spray Nozzle With Emphasis on Exiting Jet Free SurfaceMead, Ryan M 04 November 2003 (has links)
A conical nozzle with two separate inlets within its top plate is analyzed. One of the inlets is in the center of the top plate, which is free to rotate, whereas the other inlet is positioned away from the center. The fluid entering through the outer inlet slot causes the top plate of the nozzle to spin. Several fluids including FC-77, FC-72, FC-87, and Methanol running at different flow rates were investigated to observe the effect that their particular properties have on the geometry of the fluid's free surface exiting the nozzle. Another variation performed was the geometry of the nozzle. The outer inlet slot was positioned at various radial distances along the top plate. For this nozzle, the top plate remained stationary and swirling was introduced to the fluid at the inlets. It was observed that the faster flow rates caused an increase in the free surface height and cone angle. For the various radial locations of the outer inlet slot, it was noted that a position at approximately 75% of the nozzle radius produced the largest free surface height. The largest cone angle was produced when the outer inlet slot was positioned at the edge of the nozzle top plate. Another factor that increased the radial height and cone angle of the free surface was the working fluid used in the study. A larger Reynolds number produced a larger cone angle and larger free surface height (while a smaller Reynolds number produced a less significant cone angle and free surface height).
|
4 |
Analysis of flow in a spray nozzle with emphasis on exiting jet free surface [electronic resource] / by Ryan M Mead.Mead, Ryan M. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 230 pages. / Thesis (M.S.M.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: A conical nozzle with two separate inlets within its top plate is analyzed. One of the inlets is in the center of the top plate, which is free to rotate, whereas the other inlet is positioned away from the center. The fluid entering through the outer inlet slot causes the top plate of the nozzle to spin. Several fluids including FC-77, FC-72, FC-87, and Methanol running at different flow rates were investigated to observe the effect that their particular properties have on the geometry of the fluid's free surface exiting the nozzle. Another variation performed was the geometry of the nozzle. The outer inlet slot was positioned at various radial distances along the top plate. For this nozzle, the top plate remained stationary and swirling was introduced to the fluid at the inlets. It was observed that the faster flow rates caused an increase in the free surface height and cone angle. / ABSTRACT: For the various radial locations of the outer inlet slot, it was noted that a position at approximately 75% of the nozzle radius produced the largest free surface height. The largest cone angle was produced when the outer inlet slot was positioned at the edge of the nozzle top plate. Another factor that increased the radial height and cone angle of the free surface was the working fluid used in the study. A larger Reynolds number produced a larger cone angle and larger free surface height (while a smaller Reynolds number produced a less significant cone angle and free surface height). / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
|
5 |
Assessing steric bulk of protecting groups via a computational determination of exact cone angle and exact solid cone angleSobieski, Julian Witold 12 December 2018 (has links)
No description available.
|
6 |
Computational Modeling of Non-Newtonian Fluid Flow in Simplex AtomizerMandal, Anirban 18 April 2008 (has links)
No description available.
|
7 |
Optical analysis of multi-stream GDI sprays under various engine operating conditionsMojtabi, Mehdi January 2011 (has links)
The design and optimisation of a modern gasoline direct injection (GDI) engine requires a thorough understanding of the fuel sprays characteristics and atomisation process.Therefore this thesis presents a detailed optical analysis of atomisation, penetration and interaction of multi-stream GDI sprays under engine relevant pressures and temperatures. The characteristics of the fuel spray in a GDI engine have a great influence on the fuel-air mixing and combustion processes as fuel injectors must provide adequate atomisation for vaporisation of the fuel to take place before combustion is initiated, whilst also avoiding spray impingement on the cylinder walls or piston crown. In this study multi-stream injectors, to be used within GDI engines, are quantified using Laser Doppler Anemometry (LDA) on an atmospheric bench. This process allowed for highly detailed spray analysis of droplet velocities and diameter at precise locations, using a three dimensional traverse, within the injector spray. The aim of the study was to analyse plume interaction between separate plumes of multi-stream injectors. Three multi-stream injectors were subjected to testing; two six-hole injectors and one three-hole injector. The injectors differed by having different distances between the plumes. The effect of fuel type on the liquid break-up and atomisation was investigated using Phase Doppler Anemometry (PDA) and Mie imaging. Mie imaging was also performed to capture images of fuel from a multi-stream injector as it was sprayed into a pressure chamber which was used to recreate the conditions found in an engine likely to cause flash boiling. In total, five variables were investigated: fuel pressure, ambient pressure, ambient temperature, fuel composition and injector geometry. Once processed, the recorded images allowed measurement of spray tip penetration and cone angle. Qualitative data on the change in shape of the spray was also available. The results showed that flash boiling has potential to reduce droplet diameters and improve fuel vaporisation, however, the associated change in spray shape must be taken into account to avoid problems with spray impingement. Keywords: Gasoline Direct Injection, multi-stream injector, atomisation, penetration, cone angle, Mie imaging, Phase Doppler Anemometry, flash boiling.
|
8 |
Design and cold flow evaluation of a miniature Mach 4 RamjetFerguson, Kevin M. 06 1900 (has links)
Approved for public release, distribution is unlimited / Methods used for designing the ramjet included conic shock tables; isentropic flow tables and the GASTURB code was used for aerothermodynamic performance prediction. The flow field through the proposed geometry was computed using the OVERFLOW code, and small modifications were made. Geometry and solid models were created and built using SolidWorks 3D solid modeling software. A prototype ramjet was manufactured with wind tunnel mounting struts capable of measuring axial force on the model. Shadowgraph photography was used in the Mach 4 supersonic wind tunnel at the Naval Postgraduate School's Turbopropulsion Laboratory to verify predicted shock placement, and surface flow visualization was obtained of the airflow from fuel injection ports on the inlet cone of the model. All indications are that the cold-flow tests were successful. / Ensign, United States Naval Reserve
|
Page generated in 0.0367 seconds