1 |
Investigation of the impact of conformal cooling on the performance of injection moulds for the packaging industryDimitrov, D., Moammer, A January 2010 (has links)
Published Article / This paper discusses the results obtained from studies on the performance of different cooling layouts. The conventional method of cooling makes use of straight-line cooling channels. This simple method of cooling does not possess the capability of uniformly cooling down the part produced. In contrast, conformal cooling is a technique that makes use of cooling channels in an injection moulding tool that closely follows the geometry of the part to be produced. The paper presents some experiences gained in a comparative case study of conventional cooling vs conformal cooling using simulation, followed by an experimental validation and statistical analysis of the results.
|
2 |
Optimization of conformal cooling channels in 3D printed plastic injection moldsJahan, Suchana Akter January 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Plastic injection molding is a versatile process and a major part of the present
plastic manufacturing industry. Traditional die design is limited to straight (drilled)
cooling channels, which dont impart optimal thermal (or thermos-mechanical) per-
formance. Moreover, reducing the cycle time in plastic injection molding has become
significantly important to the industry nowadays. One approach that has been pro-
posed is to use conformal cooling channels. With the advent of additive manufacturing
technology, injection molding tools with conformal cooling channels are now possible.
However, optimum conformal channels based on thermo-mechanical performance are
not found. This study proposes a design methodology to generate optimized design
configurations of such channels in plastic injection molds. Numerical models have
been developed here to represent the thermo-mechanical behavior of the molds and
predict the stress and cooling time. The model is then validated experimentally and
used in conjunction with DOE (Design of Experiments) to study the effect of differ-
ent design parameters of the channels on the die performance. Design of experiments
(DOEs) is used to study the effect of critical design parameters of conformal channels
as well as their cross section geometries. These DOEs are conducted to identify op-
timal designs of conformal cooling channels which can be incorporated into injection
molds that are used to manufacture cylindrical and conical shapes of plastic parts.
Though these are simplified forms, the study provides useful insight into the poten-
tial deign parameters for all kind of injection molds.Based on the DOEs, designs for
best thermo-mechanical performance are identified (referred to as ”optimum”). The
optimization study is basically a trade-off and the solution is based on a specific sample size. This approach is highly result-oriented and provides guidelines for selecting
optimum design solutions given the plastic part thickness.
|
3 |
Part Cooling Analysis By Conformal Cooling Channels In Injection MoldingOzmen, Emin Mehmet 01 December 2007 (has links) (PDF)
Straight cooling channels are the most common method of controlling part temperature in
injection molding process. However, straight cooling channels are not enough to manage
temperature uniformity of the parts. In this work, a numerical study is conducted to decrease
cycle time and cost of the injection molded parts by using conformal cooling channels. For this
purpose, the commercial injection molding simulation program Moldflow is used.
The governing physical equations for injection molding were derived and presented. The
assumptions of the model were checked for simple geometries by comparing analytical results
and numerical results of Moldflow. Then, the effect of conformal cooling channels is
investigated for injection molding of a half cylinder shell part. It was seen that conformal cooling
channels cools part faster and more uniform than straight cooling channels without corruption on
the surface appearance.
Finally, a real life case study was presented. For this purpose, a refrigerator shelf that is
manufactured by the Arç / elik Company was studied. The process was simulated using actual
process parameters and simulation results were compared with production results. Then, the
process was simulated using conformal cooling channels and compared with production results.
It is seen that the cycle time of the refrigerator shelf was decreased considerably while
preserving surface quality appearance.
|
4 |
Effects of Conformal Cooling Channels on Additively Manufactured Injection Molding ToolingWhatcott, Tyler Blaine 08 December 2020 (has links)
This study focuses on the cycle-averaged mold temperature of additively manufactured injection molding tooling and how it is affected by conformal cooling channels. This was done by producing a benchmark mold out of Digital ABS produced by Stratasys, an acrylic based photopolymer, which was then used to produce injection molded parts until tool failure. Another, more cost-effective material, High Temp Resin produced by Formlabs, another acrylic based photopolymer, was also tested but yielded very little success. Then the mold design was altered by adding conformal cooling channels and again tested by producing injection molded parts while tracking the mold temperature. This experimentation was then compared to an injection molding cooling channel model in order to validate the model for use with additively manufactured tooling with conformal cooling channels for use in injection molding. The benchmark Digital ABS mold was able to produce 66 shots in the injection molding machine before complete mold failure. The Digital ABS mold had a cycle-averaged mold temperature of about 155°F. The High Temp Resin mold was able to produce 3 shots before complete mold failure. The High Temp Resin material is much more brittle, and the mold design did not take into account how brittle the material was. The Digital ABS mold with conformal cooling channels had a cycle-averaged mold temperature of 111°F. This is significantly lower than without cooling channels and has a high potential for improving tooling life. The cooling channel model predicted the cycle-averaged mold temperature to be 116°F. This proved to be a very good model and can be used as a design tool when choosing cooling channel geometry and position in additively manufactured tooling. This research shows the potential that conformal cooling channels have to help improve additively manufactured tooling life for injection molding. As shown in other research done, the ability to maintain the mold below 120°F significantly improves the life of additively manufactured tooling. The results of this study demonstrate the effectiveness of conformal cooling channels in controlling mold temperature. It should be researched further, but the use of conformal cooling channels has the potential to produce more production or prototype parts with additively manufactured tooling for injection molding.
|
5 |
Thermal management of moulds and dies : a contribution to improved design and manufacture of tooling for injection mouldingMoammer, A. A. 03 1900 (has links)
Thesis (PhD (Industrial Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Injection moulding of polymer components is subject to ever increasing demands for improved
part quality and production rate. It is widely recognised that the mould cooling strategy employed
is crucial to achieving these goals. A brief overview of injection moulding units and different types
of injection moulds is given.
The modern Additive Manufacturing (AM) technology for processing metal powders such as
Direct Metal Laser Sintering (DMLS) and Selective Laser Melting (SLM) offers almost full
freedom to the mould designer. Some of these modern manufacturing methods based on metal
powders, which are able to produce complex cooling channels are analysed.
A drastic change has entered the mould design domain - shifting the paradigm from design for
manufacture to manufacture for design. In combination with suitable AM methods the concept of
surface cooling moulds can now be efficiently implemented.
This study presents a new approach of predicting the minimum cooling time required for the
produced part. Different cooling layouts are analysed taking the heat transfer into consideration.
The lumped heat capacity method is implemented in this research in order to determine the
minimum cooling cycle time required.
A new approach was developed to determine the most suitable cooling layout configuration, such
as conventional cooling, conformal cooling or surface cooling, required for a moulded part based
on its characteristics such as shape complexity, space available for the cooling layout, part
quality requirements, production volume, and product life cycle.
A mould cooling design process including simulation, reverse engineering and manufacturing of
the mould insert was implemented in this study.
In order to validate the generic model developed during the course of this research comparative
experiments were carried out to determine the difference in performance of injection moulding
using conventional or surface cooling methods. The experimental results showed a significant
improvement in part quality produced with reduced cycle times using the surface cooling method. / AFRIKAANSE OPSOMMING: ‘Injection Moulding’ van polimeer komponente word al meer gedruk vir verbeterde kwaliteit en
vinniger produksie tyd. Dit is orals bekend dat die gietvorm afkoeling strategie ‘n groot rol speel
om hierdie twee doelwitte te bereik. Eers word ‘n kort oorslag gegee van ‘Injection Moulding’
eenhede en van verskillende ‘Injection Moulding’ vorms.
Die moderne Aditatiewe Vervaardigingstegnologie vir die prosessering van metaal poeiers soos
bv. Direkte Metaal Laser Sintering (DMLS) en Selektiewe Laser Smelting (SLM) bied basies volle
vryheid ten opsigte van gietvorm ontwerp. Party van die moderne vervaadigings metodes, wat op
metaal poeiers gebaseer is, wat komplekse koelings kanale kan produseer word geanaliseer.
Die ontwerpers arena het ‘n groot verandering ondergaan deurdat die fokus van ontwerp vir
vervaardiging verskuif het na vervaardiging vir ontwerp. In kombinasie met toepaslike aditatiewe
vervaardigings metodes kan oppervlak verkoeling nou effektief geïmplementeer word.
Hierdie studie bied a nuwe manier om die minimum verkoelings tyd benodig vir ‘n part te
voorspel. Verskeie verkoelings uitlegte word geanaliseer waar hitte oordrag in ag geneem word.
Die “lumped heat capacity” metode word gebruik om die minimum siklus tyd te bepaal.
‘n Nuwe benadering is ontwikkel om die mees geskikste verkoelings uitleg soos bv.
konvensionele verkoeling, konvorme verkoeling of oppervlak verkoeling te bepaal vir ‘n spesifieke
part gebaseer op die part se vorm kompleksiteit, spasie beskikbaar vir verkoelings kanale,
kwaliteit vereistes en produk lewensiklus.
Die volgende is in die studie geïmplementeer: ‘n vorm verkoelings ontwerp proses met simulasie,
‘reverse engineering’ en vervaardiging van die vorm insetsel.
Om die generiese model te verifieer gedurende die studie is vergelykende eksperimente
uitgevoer om die verskil in prestasie te bepaal tussen die gebruik van konvensionele en
oppervlak verkoelings metodes. Die eksperimentele resultate het ‘n beduidende verbetering in
part kwaliteit getoon met ‘n verkorte siklus tyd tydens die gebruik van die oppervlag verkoelings
metode.
|
6 |
Beiträge zur Auslegung konturnaher Temperierkanäle in Werkzeugen bei variothermer ProzessführungRohne, Marcus 08 August 2024 (has links)
In der Arbeit wurde der stationäre wie instationäre Wärmetransport in exemplarischen Werkzeuggeometrien untersucht. Im Ergebnis konnten Wärmedurchgangswiderstände und instationäre Verläufe charakteristischer Temperaturen (Mitteltemperatur, Werkzeugwand- und Kanalwandtemperatur) in Abhängigkeit der Wand- und Kanalabstände sowie der Strömungsgeschwindigkeit bestimmt werden. Daraus wurden Auslegungsgrundlagen in Form von Gleichungen zur Bestimmung des Formfaktors der Wärmeleitung sowie der zeitlichen Verläufe der Werkzeugwandtemperatur, der Kanalwandtemperatur und der Wandtemperatur-inhomogenität erarbeitet. Dabei zeigt sich eine gute Übereinstimmung zwischen den Gleichungen sowie experimentellen und numerischen Daten. Die Gleichungen erweitern den Wissenstand zur Auslegung von Temperierkanälen von Werkzeugen in variothermen Prozessen.
|
7 |
Effect of conformal cooling in Additive Manufactured inserts on properties of high pressure die cast aluminum componentSevastopolev, Ruslan January 2020 (has links)
Additive manufacturing can bring several advantages in tooling applications especially hot working tooling as high pressure die casting. Printing of conformal cooling channels can lead to improved cooling and faster solidification, which, in turn, can possibly result in better quality of the cast part. However, few studies on advantages of additive manufactured tools in high pressure die casting are published.The aim of this study was to investigate and quantify the effect of conformal cooling on microstructure and mechanical properties of high pressure die cast aluminum alloy. Two tools each consisting of two die inserts were produced with and without conformal channels using additive manufacturing. Both tools were used in die casting of aluminum alloy. Aluminum specimens were then characterized microstructurally in light optical microscope for secondary arm spacing measurements and subjected to tensile and hardness testing. Cooling behavior of different inserts was studied with a thermal camera and by monitoring the temperature change of cooling oil during casting. Surface roughness of die inserts was measured with profilometer before and after casting.Thermal imaging of temperature as a function of time and temperature change of oil during casting cycle indicated that conformal insert had faster cooling and lower temperature compared to conventional insert. However, thermal imaging of temperature after each shot in a certain point of time showed higher maximum and minimum temperature on conformal die surface but no significant difference in normalized temperature gradient compared to the conventional insert.The average secondary dendrite arm spacing values were fairly similar for samples from conventional and conformal inserts, while more specimens from conventional insert demonstrated coarser structure. Slower cooling in conventional insert could result in the coarser secondary dendrite arm spacing.Tensile strength and hardness testing revealed no significant difference in mechanical properties of the specimens cast in conventional and conformal die inserts. However, reduced deviations in hardness was observed for samples cast with conformal insert. This is in agreement with secondary dendrite arm spacing measurements indicating improved cooling with conformal insert.Surface roughness measurement showed small wear of the inserts. More castings are needed to observe a possible difference in wear between the conventional and conformal inserts.Small observed differences in cooling rate and secondary arm spacing did not result in evident difference in mechanical properties of the aluminum alloy but the variation in properties were reduced for samples cast with conformal cooling. Future work may include more accurate measurement of cooling behavior with a thermocouple printed into the die insert, casting of thicker specimen for porosity evaluation and fatigue testing and longer casting series to evaluate the influence of conformal cooling on tool wear.
|
Page generated in 0.0997 seconds