• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 12
  • 12
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structure and function of the disordered regions within translesion synthesis DNA polymerases

Powers, Kyle Thomas 01 December 2018 (has links)
Normal DNA replication is blocked by DNA damage in the template strand. Translesion synthesis is a major pathway for overcoming these replication blocks. In this process, multiple non-classical DNA polymerases form a complex at the stalled replication fork called the mutasome. This complex is structurally organized by the replication accessory factor PCNA and the non-classical DNA polymerase Rev1. One of the non-classical DNA polymerases within the mutasome then catalyzes replication through the damage. Each non-classical DNA polymerase has one or more cognate lesions, which the enzyme bypasses with high accuracy and efficiency. Thus, the accuracy and efficiency of translesion synthesis depends on which non-classical DNA polymerase within the mutasome is chosen to bypass the damage. In this thesis, I discuss how the most appropriate polymerase is chosen. In so doing, I examine the components of the mutasome; the structural motifs that mediate the protein interactions in the mutasome; the methods used to study translesion synthesis; the definition of a cognate lesion; the intrinsically disordered regions that tether the polymerases to PCNA and to one another; the multiple architectures that the mutasome can adopt, such as PCNA tool belts and Rev1 bridges; and the kinetic selection model in which the most appropriate polymerase is chosen via a competition among the multiple polymerases within the mutasome. Taken together, this thesis provides and inclusive review of the current state of what is known about translesion synthesis with conclusions at its end suggesting what major questions remain and ideas of how to answer them.
12

Development of ¹⁹F NMR Methods for the Study of GlpG Rhomboid Protease in Detergents and Lipid Nanoparticle Systems

Hassan, Anwar I. 11 August 2021 (has links)
Rhomboids are a family of intramembrane serine proteases that cleave transmembrane protein substrates within the lipid membrane. They are involved in a wide range of biological processes, including signal transduction, parasite invasion, bacterial quorum sensing and apoptosis. While previous X-ray crystal structures and functional studies have provided some detailed insights into the mechanism of intramembrane hydrolysis, it is still not clear how the transmembrane substrate can gain access into the active site from the lipid environment. While several modes of action have been suggested, one hypothesis proposes a lateral movement of the fifth transmembrane helix, causing a displacement that would allow transmembrane substrates to enter the rhomboid active site. A powerful method that has the potential to yield insights into rhomboid dynamics is solution NMR; however, the large size of rhomboid protease samples has complicated conventional methods typically used to assess protein structure and dynamics. ¹⁹F NMR could allow the study of rhomboid conformational dynamics by providing a simplified spectrum with high sensitivity to changes in local chemical environments. In this thesis various methods of ¹⁹F incorporation were evaluated for utility in studying rhomboid conformational dynamics, focusing on the GlpG rhomboid from E. coli. First, GlpG samples were prepared with ¹⁹F incorporated into tryptophan sidechains, and 1D ¹⁹F NMR spectra were acquired. While spectra with decent spectral dispersion were obtained, the assignment process was complicated by low signal-to-noise, and multiple changes in the spectrum introduced by the mutation. Chemoselective labelling of cysteine residues with probes containing a trifluoromethyl group was also investigated and found to give rise to well resolved ¹⁹F NMR spectra with promising characteristics. In addition, protocols for incorporation of trifluoromethyl-phenylalanine using unnatural amino acid incorporation at introduced amber codon sites were also explored, since one of the long-term goals of this work is to study ¹⁹F-labelled GlpG in its native lipid environment. For this purpose, some protocol development was also performed to introduce GlpG into lipid nanoparticles using styrene maleic acid co-block polymers. However, low expression yields of trifluoromethyl-phenylalanine-labelled GlpG and the large size of the lipid nanoparticles are not yet compatible with solution NMR. Nonetheless, this thesis lays the groundwork for further development of these samples to allow the future study of conformational exchange of GlpG in native lipid membranes.
13

GAINING INSIGHTS INTO THE CONFORMATIONAL DYNAMICS OF PHOSPHOLIPASE C-BETA

Michelle M Van Camp (11161194) 21 July 2021 (has links)
<p>Phospholipase Cs (PLCs) are a family of enzymes that hydrolyze membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2) to generate inositol triphosphate (IP3) and diacylglycerol (DAG). These second messengers activate a variety of intracellular responses, including inflammation, vascular smooth muscle contraction, and cardiac hypertrophy. While much is known about how Gaq-mediated activation of PLCb occurs, the same cannot be said for Gbg-mediated activation. Residues within the PLCb-Gbg binding interface were previously identified in interior regions of the protein, suggesting the PH domain must undergo a conformational change to allow for Gbg-mediated activation. However, the role of PH domain conformational dynamics in Gbg-mediated activation of PLCb has yet to be determined. In this work, I discuss efforts to characterize conformational dynamics of the PLCb PH domain and its role in interactions of the enzyme with liposomes and Gbg. First, I generated a disulfide crosslink between the PH domain and EF hands1/2 of PLCb3, purified under oxidizing or reducing conditions, and conducted biochemical and structural tests to determine any differences in structure and/or function of the protein as compared to wild-type. Results of these studies provided the first direct structural evidence of PLCb PH domain dynamics in solution. Then, I discuss the rationale behind the generation of a surface cysteine-less PLCb for use in solvatochromic fluorescence assays in the presence and absence of liposomes and Gbg. Initial results of these studies suggest the PLCb PH domain favors a buried conformation alone and in the presence of Gbg or liposomes, and likely exists at an equilibrium between open and closed states.</p>
14

Exchange between ordered and disordered segments in CFTR modulates function at the expense of stability: A molecular pathway for misfolding of CFTR

Scholl, Daniel 16 October 2020 (has links) (PDF)
The genetic disease cystic fibrosis is the most common lethal genetic disease in Western countries. People born with cystic fibrosis suffer from many health issues including severe respiratory problems, inflammation and recurrent lung infections that can become fatal. The disease is caused by the loss of function of a protein called the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an chloride ion channel and, in healthy people, its activity assures correct water and salt transport across the cell membrane. Most cases of cystic fibrosis are caused by a genetic defect that leads to the deletion of phenylalanine 508 (F508del) in the amino acid sequence of the protein. The molecular mechanism by which F508del leads to loss of function of the CFTR channel is still poorly understood. The mutation is found in the first nucleotide binding domain (NBD1) and studies have shown that it causes misfolding of CFTR and subsequent degradation of the protein by the cellular quality control system. It is established that the mutation affects stability and dynamics of NBD1 but does not alter its structure significantly. This destabilizing effect of F508del can be compensated by specific mutations distributed over different regions of NBD1, leading to recovery of membrane expression of a functional channel. A surprising example involves the regulatory insertion (RI), a 32-residue long segment found in all CFTR orthologs but not in related channels or transporters. The RI is not resolved in crystal structures of NBD1 nor cryo-EM structures of CFTR and has been described as intrinsically disordered. Its functional role in CFTR is unknown. Removal of the RI increases the stability of the NBD1 domain and, in the context of F508del-CFTR, this deletion restores maturation, cell surface expression and activity of the mutant channel. We probed the effect of the RI on NBD1 structure, dynamics and allostery using X-ray crystallography, single molecule FRET and hydrogen-deuterium exchange. We discovered that the RI enables an alternative NBD1 fold which departs markedly from the canonical fold previously observed for this domain and the NBDs of other ABC transporters. The conformational equilibrium between these states is regulated by ATP binding and affected by disease-associated conditions. Aside from clear alterations to structure and dynamics of NBD1, the RI also affects allostery, i.e. how NBD1 structure and dynamics respond to perturbations such as ligand binding. Finally, we show that the RI-enabled conformation is adopted in full-length CFTR and associated with increased channel activity in electrophysiological assays. We then identify an allosteric network that links the structural hotspots of the conformational changes to F508 and its surroundings. Lastly, we argue that these conformational changes lead to unfolding of NBD1 in the context of F508del, providing a new model for the molecular mechanism leading to pathogenesis. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
15

Structure and Function of the G Domain of Parkinson's Disease-Associated Protein LRRK2

Wu, Chunxiang 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mutations in the gene encoding for leucine rich repeats kinase 2 (LRRK2) are commonly found in Parkinson’s disease. Recently, we found that the disease-associated point mutations at residue R1441 in the G domain (ROC) of LRRK2 resulted in perturbation of its GTPase activity. In this study, we compare the biochemical and biophysical properties of the ROC domain of LRRK2 carrying the PD-associated mutations at residue R1441 with those of the wild-type. We found that the disease-associated mutations (R1441C/G/H) showed marked quaternary structure compared to wild-type, in that the latter existed in solution in both monomeric and dimeric conformations dynamically regulated by GDP/GTP binding state, while we detected only monomeric conformation for three disease-associated mutants. To understand the structural basis for this plasticity and the activity reduction in the mutants, we solved a 1.6 Å crystal structure of the wild type ROC that shows a stable dimeric conformation in which the switch motifs and inter-switch regions mediate extensive interactions at the dimer interface. Residue R1441, where PD-associated mutations occur, forms exquisite interactions at the interface, thus suggesting a critical role of this residue in maintaining a dynamic dimer-monomer interconversion and conformational flexibility of the switch motifs. Consistently, substituting R1441 for other arbitrary mutations (R1441K/S/T) lead to similar perturbation of GTPase activity and dimerization defects as observed in the disease-associated mutants. Locking the ROC domain in either dimeric or monomeric conformations by engineered disulfide bond alters the binding affinity to GTP (but not GDP) and significantly reduce GTPase activity, thus suggesting that the dynamic dimer-monomer interconversion and conformational plasticity are essential for ROC function as a molecular switch modulating the kinase activity of LRRK2.
16

Insight into the chaperone mechanisms of Grp94

Amankwah, Yaa Sarfowah 07 June 2023 (has links)
No description available.
17

Single-Molecule Spectroscopy Studies of the Conformational Dynamics of Enzymes

Lu, Maolin 13 November 2014 (has links)
No description available.
18

Molecular Dynamics Simulation of the Effect of the Crystal Environment on Protein Conformational Dynamics and Functional Motions

Ahlstrom, Logan Sommers January 2012 (has links)
Proteins are dynamic and interconvert between different conformations to perform their biological functions. Simulation methodology drawing upon principles from classical mechanics - molecular dynamics (MD) simulation - can be used to simulate protein dynamics and reconstruct the conformational ensemble at a level of atomic detail that is inaccessible to experiment. We use the dynamic insight achieved through simulation to enhance our understanding of protein structures solved by X-ray crystallography. Protein X-ray structures provide the most important information for structural biology, yet they depict just a single snapshot of the solution ensemble, which is under the influence of the confined crystal medium. Thus, we ask a fundamental question - how well do static X-ray structures represent the dynamic solution state of a protein? To understand how the crystal environment affects both global and local protein conformational dynamics, we consider two model systems. We first examine the variation in global conformation observed in several solved X-ray structures of the λ Cro dimer by reconstructing the solution ensemble using the replica exchange enhanced sampling method, and show that one X-ray conformation is unstable in solution. Subsequent simulation of Cro in the crystal environment quantitatively assesses the strength of packing interfaces and reveals that mutation in the lattice affects the stability of crystal forms. We also evaluate the Cro models solved by nuclear magnetic resonance spectroscopy and demonstrate that they represent unstable solution states. In addition to our studies of the Cro dimer, we investigate the effect of crystal packing on side-chain conformational dynamics through solution and crystal MD simulation of the HIV microbicide Cyanovirin-N. We find that long, polar surface side-chains can undergo a strong reduction in conformational entropy upon incorporation into crystal contacts, which supports the application of surface engineering to facilitate protein crystallization. Finally, we outline a general framework for using network visualization to aid in the functional interpretation of conformational ensembles generated from MD simulation. Our results will enhance the understanding of X-ray data in establishing protein structure-function-dynamics relationships.
19

THE ROLE OF CHAIN FLEXIBILITY AND CONFORMATIONALDYNAMICS ON INTRINSICALLY DISORDERED PROTEINASSOCIATION

Ruzmetov, Talant A. 02 August 2019 (has links)
No description available.
20

Single-molecule magnetic tweezers development and application in studies of enzyme dynamics and cell manipulation

Wu, Meiling 14 April 2020 (has links)
No description available.

Page generated in 0.1134 seconds