Spelling suggestions: "subject:"conjugated gradient method""
11 |
Space-Time Finite Element Analysis on Graphics Processing Unit Computing PlatformLuckshetty, Harish Kumar 19 April 2012 (has links)
No description available.
|
12 |
Iterative Methods for the Reconstruction of Tomographic Images with Unconventional Source-detector ConfigurationsMukkananchery, Abey 01 January 2005 (has links)
X-ray computed tomography (CT) holds a critical role in current medical practice for the evaluation of patients, particularly in the emergency department and intensive care units. Expensive high resolution stationary scanners are available in radiology departments of most hospitals. In many situations however, a small, inexpensive, portable CT unit would be of significant value. Several mobile or miniature CT scanners are available, but none of these systems have the range, flexibility or overall physical characteristics of a truly portable device. The main challenge is the design of a geometry that optimally trades image quality for system size. The goal of this work has been to develop analysis tools to help simulate and evaluate novel system geometries. To test the tools we have developed, three geometries have been considered in the thesis, namely, parallel projections, clam-shell and parallel plate geometries. The parallel projections geometry is commonly used in reconstruction of images by filtered back projection technique. A clam-shell structure consists of two semi-cylindrical braces that fold together over the patient's body and connect at the top. A parallel plate structure uses two fixed flat or curved plates on either side of the patient's body and image from fixed sources/detectors that are gated on and off so as to step the X-ray field through the body. The parallel plate geometry has been found to be the least reliable of the three geometries investigated, with the parallel projections geometry being the most reliable. For the targeted application, the clam-shell geometry seems to be the solution with more chances to succeed in the short term. We implemented the Van Cittert iterative technique for the reconstruction of images from projections. The thesis discusses a number of variations on the algorithm, such as the use of the Conjugate Gradient Method, several choices for the initial guess, and the incorporation of a priori information to handle the reconstruction of images with metal inserts.
|
13 |
Utilizing Problem Structure in Optimization of Radiation TherapyCarlsson, Fredrik January 2008 (has links)
In this thesis, optimization approaches for intensity-modulated radiation therapy are developed and evaluated with focus on numerical efficiency and treatment delivery aspects. The first two papers deal with strategies for solving fluence map optimization problems efficiently while avoiding solutions with jagged fluence profiles. The last two papers concern optimization of step-and-shoot parameters with emphasis on generating treatment plans that can be delivered efficiently and accurately. In the first paper, the problem dimension of a fluence map optimization problem is reduced through a spectral decomposition of the Hessian of the objective function. The weights of the eigenvectors corresponding to the p largest eigenvalues are introduced as optimization variables, and the impact on the solution of varying p is studied. Including only a few eigenvector weights results in faster initial decrease of the objective value, but with an inferior solution, compared to optimization of the bixel weights. An approach combining eigenvector weights and bixel weights produces improved solutions, but at the expense of the pre-computational time for the spectral decomposition. So-called iterative regularization is performed on fluence map optimization problems in the second paper. The idea is to find regular solutions by utilizing an optimization method that is able to find near-optimal solutions with non-jagged fluence profiles in few iterations. The suitability of a quasi-Newton sequential quadratic programming method is demonstrated by comparing the treatment quality of deliverable step-and-shoot plans, generated through leaf sequencing with a fixed number of segments, for different number of bixel-weight iterations. A conclusion is that over-optimization of the fluence map optimization problem prior to leaf sequencing should be avoided. An approach for dynamically generating multileaf collimator segments using a column generation approach combined with optimization of segment shapes and weights is presented in the third paper. Numerical results demonstrate that the adjustment of leaf positions improves the plan quality and that satisfactory treatment plans are found with few segments. The method provides a tool for exploring the trade-off between plan quality and treatment complexity by generating a sequence of deliverable plans of increasing quality. The final paper is devoted to understanding the ability of the column generation approach in the third paper to find near-optimal solutions with very few columns compared to the problem dimension. The impact of different restrictions on the generated columns is studied, both in terms of numerical behaviour and convergence properties. A bound on the two-norm of the columns results in the conjugate-gradient method. Numerical results indicate that the appealing properties of the conjugate-gradient method on ill-conditioned problems are inherited in the column generation approach of the third paper. / QC 20100709
|
14 |
Izbor parametara kod gradijentnih metoda za probleme optimizacije bez ograničenja / Choice of parameters in gradient methods for the unconstrained optimization problems / Choice of parameters in gradient methods for the unconstrained optimization problemsĐorđević Snežana 22 May 2015 (has links)
<p>Posmatra se problem optimizacije bez ograničenja. Za rešavanje<br />problema optimizacije bez ograničenja postoji mnoštvo raznovrsnih<br />metoda. Istraživanje ovde motivisano je potrebom za metodama koje<br />će brzo konvergirati.<br />Cilj je sistematizacija poznatih rezultata, kao i teorijska i numerička<br />analiza mogućnosti uvođenja parametra u gradijentne metode.<br />Najpre se razmatra problem minimizacije konveksne funkcije više<br />promenljivih.<br />Problem minimizacije konveksne funkcije više promenljivih ovde se<br />rešava bez izračunavanja matrice hesijana, što je naročito aktuelno za<br />sisteme velikih dimenzija, kao i za probleme optimizacije kod kojih<br />ne raspolažemo ni tačnom vrednošću funkcije cilja, ni tačnom<br />vrednošću gradijenta. Deo motivacije za istraživanjem ovde leži i u<br />postojanju problema kod kojih je funkcija cilja rezultat simulacija.<br />Numerički rezultati, predstavljeni u Glavi 6, pokazuju da uvođenje<br />izvesnog parametra može biti korisno, odnosno, dovodi do ubrzanja<br />određenog metoda optimizacije.<br />Takođe se predstavlja jedan novi hibridni metod konjugovanog<br />gradijenta, kod koga je parametar konjugovanog gradijenta<br />konveksna kombinacija dva poznata parametra konjugovanog<br />gradijenta.<br />U prvoj glavi opisuje se motivacija kao i osnovni pojmovi potrebni za<br />praćenje preostalih glava.<br />U drugoj glavi daje se pregled nekih gradijentnih metoda prvog i<br />drugog reda.<br />Četvrta glava sadrži pregled osnovnih pojmova i nekih rezultata<br />vezanih za metode konjugovanih gradijenata.<br />Pomenute glave su tu radi pregleda nekih poznatih rezultata, dok se<br />originalni doprinos predstavlja u trećoj, petoj i šestoj glavi.<br />U trećoj glavi se opisuje izvesna modifikacija određenog metoda u<br />kome se koristi multiplikativni parametar, izabran na slučajan način.<br />Dokazuje se linearna konvergencija tako formiranog novog metoda.<br />Peta glava sadrži originalne rezultate koji se odnose na metode<br />konjugovanih gradijenata. Naime, u ovoj glavi predstavlja se novi<br />hibridni metod konjugovanih gradijenata, koji je konveksna<br />kombinacija dva poznata metoda konjugovanih gradijenata.<br />U šestoj glavi se daju rezultati numeričkih eksperimenata, izvršenih<br />na izvesnom skupu test funkcija, koji se odnose na metode iz treće i<br />pete glave. Implementacija svih razmatranih algoritama rađena je u<br />paketu MATHEMATICA. Kriterijum upoređivanja je vreme rada<br />centralne procesorske jedinice.6</p> / <p>The problem under consideration is an unconstrained optimization<br />problem. There are many different methods made in aim to solve the<br />optimization problems. The investigation made here is motivated by<br />the fact that the methods which converge fast are necessary.<br />The main goal is the systematization of some known results and also<br />theoretical and numerical analysis of the possibilities to int roduce<br />some parameters within gradient methods.<br />Firstly, the minimization problem is considered, where the objective<br />function is a convex, multivar iable function. This problem is solved<br />here without the calculation of Hessian, and such solution is very<br />important, for example, when the big dimension systems are solved,<br />and also for solving optimization problems with unknown values of<br />the objective function and its gradient. Partially, this investigation is<br />motivated by the existence of problems where the objective function<br />is the result of simulations.<br />Numerical results, presented in Chapter 6, show that the introduction<br />of a parameter is useful, i.e., such introduction results by the<br />acceleration of the known optimization method.<br />Further, one new hybrid conjugate gradient method is presented, in<br />which the conjugate gradient parameter is a convex combination of<br />two known conjugate gradient parameters.<br />In the first chapter, there is motivation and also the basic co ncepts<br />which are necessary for the other chapters.<br />The second chapter contains the survey of some first order and<br />second order gradient methods.<br />The fourth chapter contains the survey of some basic concepts and<br />results corresponding to conjugate gradient methods.<br />The first, the second and the fourth chapters are here to help in<br />considering of some known results, and the original results are<br />presented in the chapters 3,5 and 6.<br />In the third chapter, a modification of one unco nstrained optimization<br />method is presented, in which the randomly chosen multiplicative<br />parameter is used. Also, the linear convergence of such modification<br />is proved.<br />The fifth chapter contains the original results, corresponding to<br />conjugate gradient methods. Namely, one new hybrid conjugate<br />gradient method is presented, and this method is the convex<br />combination of two known conjugate gradient methods.<br />The sixth chapter consists of the numerical results, performed on a set<br />of test functions, corresponding to methods in the chapters 3 and 5.<br />Implementation of all considered algorithms is made in Mathematica.<br />The comparison criterion is CPU time.</p> / <p>The problem under consideration is an unconstrained optimization<br />problem. There are many different methods made in aim to solve the<br />optimization problems. The investigation made here is motivated by<br />the fact that the methods which converge fast are necessary.<br />The main goal is the systematization of some known results and also<br />theoretical and numerical analysis of the possibilities to int roduce<br />some parameters within gradient methods.<br />Firstly, the minimization problem is considered, where the objective<br />function is a convex, multivar iable function. This problem is solved<br />here without the calculation of Hessian, and such solution is very<br />important, for example, when the big dimension systems are solved,<br />and also for solving optimization problems with unknown values of<br />the objective function and its gradient. Partially, this investigation is<br />motivated by the existence of problems where the objective function<br />is the result of simulations.<br />Numerical results, presented in Chapter 6, show that the introduction<br />of a parameter is useful, i.e., such introduction results by the<br />acceleration of the known optimization method.<br />Further, one new hybrid conjugate gradient method is presented, in<br />which the conjugate gradient parameter is a convex combination of<br />two known conjugate gradient parameters.<br />In the first chapter, there is motivation and also the basic co ncepts<br />which are necessary for the other chapters.<br />Key Words Documentation 97<br />The second chapter contains the survey of some first order and<br />second order gradient methods.<br />The fourth chapter contains the survey of some basic concepts and<br />results corresponding to conjugate gradient methods.<br />The first, the second and the fourth chapters are here to help in<br />considering of some known results, and the original results are<br />presented in the chapters 3,5 and 6.<br />In the third chapter, a modification of one unco nstrained optimization<br />method is presented, in which the randomly chosen multiplicative<br />parameter is used. Also, the linear convergence of such modification<br />is proved.<br />The fifth chapter contains the original results, corresponding to<br />conjugate gradient methods. Namely, one new hybrid conjugate<br />gradient method is presented, and this method is the convex<br />combination of two known conjugate gradient methods.<br />The sixth chapter consists of the numerical results, performed on a set<br />of test functions, corresponding to methods in the chapters 3 and 5.<br />Implementation of all considered algorithms is made in Mathematica.<br />The comparison criterion is CPU time</p>
|
15 |
Uma nova abordagem para resolução de problemas de fluxo de carga com variáveis discretas / A new approach for solving load flow problems with discrete variablesScheila Valechenski Biehl 07 May 2012 (has links)
Este trabalho apresenta uma nova abordagem para a modelagem e resolução de problemas de fluxo de carga em sistemas elétricos de potência. O modelo proposto é formado simultaneamente pelo conjunto de equações não lineares que representam as restrições de carga do problema e por restrições de complementaridade associadas com as restrições de operação da rede, as quais propiciam o controle implícito das tensões nas barras com controle de geração. Também é proposta uma técnica para a obtenção dos valores discretos dos taps de tranformadores, de maneira que o ajuste dessas variáveis possa ser realizado em passos discretos. A metodologia desenvolvida consiste em tratar o sistema misto de equações e inequações não lineares como um problema de factibilidade não linear e transformá-lo em um problema de mínimos quadrados não lineares, o qual é resolvido por uma sequência de subproblemas linearizados dentro de uma região de confiança. Para a obtenção de soluções aproximadas desse subproblema foi adotado o método do gradiente conjugado de Steihaug, combinando estratégias de região de confiança e filtros multidimensionais para analisar a qualidade das soluções fornecidas. Foram realizados testes numéricos com os sistemas de 14, 30, 57, 118 e 300 barras do IEEE, e com um sistema brasileiro equivalente CESP 53 barras, os quais indicaram boa flexibilidade e robustez do método proposto. / This work presents a new approach to the load flow problem in electrical power systems and develops a methodology for its resolution. The proposed model is simultaneously composed by nonlinear equations and inequations which represent the load and operational restrictions of the system, where a set of complementarity constraints model the relationship between voltage and reactive power generation in controled buses. It is also proposed a new technique to obtaining a discrete solution for the transformer taps, allowing their discrete adjustment. The method developed treats the mixed system of equations and inequations of the load flow problem as a nonlinear feasibility problem and converts it in a nonlinear least squares problem, which is solved by minimizing a sequence of linearized subproblems, whitin a trust region. To obtain approximate solutions at every iteration, we use the Steihaug conjugate gradient method, combining trust region and multidimensional filters techniques to analyse the quality of the provided solution. Numerical results using 14, 30, 57, 118 and 300-bus IEEE power systems, and a real brazilian equivalent system CESP 53-bus, indicate the flexibility and robustness of the proposed method.
|
16 |
Uma nova abordagem para resolução de problemas de fluxo de carga com variáveis discretas / A new approach for solving load flow problems with discrete variablesBiehl, Scheila Valechenski 07 May 2012 (has links)
Este trabalho apresenta uma nova abordagem para a modelagem e resolução de problemas de fluxo de carga em sistemas elétricos de potência. O modelo proposto é formado simultaneamente pelo conjunto de equações não lineares que representam as restrições de carga do problema e por restrições de complementaridade associadas com as restrições de operação da rede, as quais propiciam o controle implícito das tensões nas barras com controle de geração. Também é proposta uma técnica para a obtenção dos valores discretos dos taps de tranformadores, de maneira que o ajuste dessas variáveis possa ser realizado em passos discretos. A metodologia desenvolvida consiste em tratar o sistema misto de equações e inequações não lineares como um problema de factibilidade não linear e transformá-lo em um problema de mínimos quadrados não lineares, o qual é resolvido por uma sequência de subproblemas linearizados dentro de uma região de confiança. Para a obtenção de soluções aproximadas desse subproblema foi adotado o método do gradiente conjugado de Steihaug, combinando estratégias de região de confiança e filtros multidimensionais para analisar a qualidade das soluções fornecidas. Foram realizados testes numéricos com os sistemas de 14, 30, 57, 118 e 300 barras do IEEE, e com um sistema brasileiro equivalente CESP 53 barras, os quais indicaram boa flexibilidade e robustez do método proposto. / This work presents a new approach to the load flow problem in electrical power systems and develops a methodology for its resolution. The proposed model is simultaneously composed by nonlinear equations and inequations which represent the load and operational restrictions of the system, where a set of complementarity constraints model the relationship between voltage and reactive power generation in controled buses. It is also proposed a new technique to obtaining a discrete solution for the transformer taps, allowing their discrete adjustment. The method developed treats the mixed system of equations and inequations of the load flow problem as a nonlinear feasibility problem and converts it in a nonlinear least squares problem, which is solved by minimizing a sequence of linearized subproblems, whitin a trust region. To obtain approximate solutions at every iteration, we use the Steihaug conjugate gradient method, combining trust region and multidimensional filters techniques to analyse the quality of the provided solution. Numerical results using 14, 30, 57, 118 and 300-bus IEEE power systems, and a real brazilian equivalent system CESP 53-bus, indicate the flexibility and robustness of the proposed method.
|
17 |
Αποδοτικές τεχνικές προσαρμοστικής ισοστάθμισης διαύλου βασισμένες στη μέθοδο Conjugate Gradient / Efficient techniques for channel equalization based on the Conjugate Gradient methodΛάλος, Αριστείδης 16 May 2007 (has links)
Η χρήση επαναληπτικών τεχνικών προσαρμοστικής ισοστάθμισης διαύλου αποτελεί μια σχετικά πρόσφατη και πολλά υποσχόμενη μέθοδο αντιμετώπισης του φαινομένου της διασυμβολικής παρεμβολής που εισάγεται από το κανάλι λόγω του φαινομένου της πολυδιόδευσης. Ο αλγόριθμος που έχει επικρατήσει στις περισσότερες προσαρμοστικές εφαρμογές είναι ο ελαχίστων μέσων τετραγώνων (LMS). Διακρίνεται για την απλότητά του, έχει όμως φτωχές ιδιότητες σύγκλισης. Η μέθοδος των αναδρομικών ελαχίστων τετραγώνων (RLS) είναι επίσης αρκετά διαδεδομένη και κατέχει υπερέχουσες ιδιότητες σύγκλισης. Ωστόσο παρουσιάζει μεγάλη υπολογιστική πολυπλοκότητα και αυξημένες απαιτήσεις σε μνήμη. Στα πλαίσια της εργασίας αυτής εγίνε μια προσπάθεια ανάλυσης των τεχνικών που βασίζονται στη μέθοδο των συζυγών παραγώγων (Conjugate Gradient), χρησιμοποιούνται σε προβλήματα προσαρμοστικού φιλτραρίσματος και πιο ειδικά στο πρόβλημα της προσαρμοστικής ισοστάθμισης διαύλου. Οι τεχνικές αυτές επεξεργάζονται τα δεδομένα και ανά μπλοκ. Είναι ικανές να παρέχουν ιδιότητες σύγκλισης συγκρίσιμες με αυτές της (RLS) μεθόδου, εισάγοντας υπολογιστική πολυπλοκότητα ενδιάμεσων απαιτήσεων μεταξύ των μεθόδων LMS και RLS χωρίς να παρουσιάζουν προβλήματα αριθμητικής ευστάθειας. / The use of iteration methods for adaptive equalization has received considerable attention during the past several decades. The Least Mean Squares (LMS) method, which has found widespread use owing to its simplicity, has poor convergence properties. The Recursive Least Squares (RLS) method possess superior convergence properties, but it is computationally intensive and has high storage requirements for matrix manipulations. In this MSc thesis the technique of conjugate gradients is applied for the adaptive filtering problem. Conjugate gradient algorithms for adaptive filtering applications suitable for efficient implementation has been developed and has been applied for the design of an adaptive transversal equalizer. Low cost block algorithms using the preconditioned conjugate gradient method are also discussed. The algorithms are capable of providing convergence comparable to RLS schemes at a computational complexity between the LMS and the RLS methods and does not suffer from any known instability problems.
|
18 |
A comparison of two multilevel Schur preconditioners for adaptive FEMKarlsson, Christian January 2014 (has links)
There are several algorithms for solving the linear system of equations that arise from the finite element method with linear or near-linear computational complexity. One way is to find an approximation of the stiffness matrix that is such that it can be used in a preconditioned conjugate residual method, that is, a preconditioner to the stiffness matrix. We have studied two preconditioners for the conjugate residual method, both based on writing the stiffness matrix in block form, factorising it and then approximating the Schur complement block to get a preconditioner. We have studied the stationary reaction-diffusion-advection equation in two dimensions. The mesh is refined adaptively, giving a hierarchy of meshes. In the first method the Schur complement is approximated by the stiffness matrix at one coarser level of the mesh, in the second method it is approximated as the assembly of local Schur complements corresponding to macro triangles. For two levels the theoretical bound of the condition number is 1/(1-C²) for either method, where C is the Cauchy-Bunyakovsky-Schwarz constant. For multiple levels there is less theory. For the first method it is known that the condition number of the preconditioned stiffness matrix is O(l²), where l is the number of levels of the preconditioner, or, equivalently, the number mesh refinements. For the second method the asymptotic behaviour is not known theoretically. In neither case is the dependency of the condition number of C known. We have tested both methods on several problems and found the first method to always give a better condition number, except for very few levels. For all tested problems, using the first method it seems that the condition number is O(l), in fact it is typically not larger than Cl. For the second method the growth seems to be superlinear.
|
19 |
Stratégies de commande pour déplacer une meute de capteurs dédiés à l'identification de sources chauffantes mobiles / Control strategies of mobiles sensors for quasi on-line identification of mobile heating sourceTran, Thanh phong 29 June 2017 (has links)
De nombreux systèmes physiques complexes sont modélisés à l’aide de systèmes d’équations aux dérivées partielles comprenant éventuellement des couplages et des non linéarités. Dans ce cadre, les problématiques de commande qui cherchent à définir quels sont les moyens d’actions (éventuellement en dimension infinie) permettant d’atteindre un état désiré ne sont pas triviales.Il en est de même pour l’identification en ligne de caractéristiques du système physique à partir d’informations fournies par des observations pertinentes. Cet aspect est souvent considéré comme un problème inverse dont la résolution pose de nombreuses questions spécifiques et ardues.Afin d’illustrer la problématique du déplacement judicieux d’un ensemble de capteurs mobiles pour reconstruire un terme source dans une équation aux dérivées partielles paraboliques, un dispositif est décrit dans cette étude. Il décrit des phénomènes de convection et diffusion éventuellement non linéaires.Le travail décrit dans ce document est destiné à développer une méthodologie complète en vue de réaliser une conception optimale d'expériences dans le cadre de problèmes mal posés non linéaires associés à l'évaluation de paramètres inconnus dans des systèmes décrits par des équations aux dérivées partielles. Le prototype expérimental a pour objet de tester les performances des stratégies de déploiement optimal d'un ensemble de capteurs mobile afin d’identifier des paramètres de plusieurs sources chauffantes en mouvement. / Many complex physical systems are modeled using systems of partial differential equations including possibly coupling and non-linearity. In this context, the determination of control strategies (in infinite dimension) in order to achieve a desired state is not trivial. It is obvious that quasi on-line identification of characteristics of the physical system from information provided by relevant sensors is quite complex. This optimization problem is often formulated as an inverse problem, whose resolution raises many specific questions. To illustrate the problem of the moving of a set of mobile sensors to identify a term source in parabolic partial differential equations, an experimental device is proposed in this study. Both phenomena of convection and diffusion (possibly non-linear) are taken into account. The work described in this document is intended to develop a comprehensive methodology to achieve an optimal design of experiments for nonlinear ill-posed problems associated with the evaluation of unknown parameters in systems described by partial differential equations. The experimental prototype is intended to test the performance of strategies for optimal deployment of a mobile set of sensors to identify parameters of multiple heating sources in movement.
|
20 |
Fluxmétrie et caractérisation thermiques instationnaires des dépôts des composants face au plasma du Tokamak JET par techniques inverses / Measurement of powerflux and thermal characterization of deposits in non-stationary conditions on plasma facing components of the JET Tokamak by inverse methodsGaspar, Jonathan 27 September 2013 (has links)
Ces travaux portent sur la résolution successive de deux problèmes inverses en transferts thermiques : l'estimation de la densité de flux en surface d'un matériau puis de la conductivité thermique équivalente d'une couche déposée en surface de ce matériau. Le modèle direct est bidimensionnel orthotrope (géométrie réelle d'un matériau composite), instationnaire, non-linéaire et ses équations sont résolues par éléments finis. Les matériaux étudiés sont les composants face au plasma (tuiles composite carbone-carbone) dans le Tokamak JET. La densité de flux recherchée varie avec une dimension spatiale et avec le temps. La conductivité du dépôt de surface varie spatialement et peut également varier au cours du temps pendant l'expérience (toutes les autres propriétés thermophysiques dépendent de la température). Les deux problèmes inverses sont résolus à l'aide de l'algorithme des gradients conjugués associé à la méthode de l'état adjoint pour le calcul exact du gradient. La donnée expérimentale utilisée pour la résolution du premier problème inverse (estimation de flux surfacique) est le thermogramme fourni par un thermocouple enfoui. Le second problème inverse utilise, lui, les variations spatio-temporelles de la température de surface du dépôt inconnu (thermographie infrarouge) pour identifier sa conductivité. Des calculs de confiance associée aux grandeurs identifiées sont réalisés avec la démarche Monte Carlo. Les méthodes mises au point pendant ces travaux aident à comprendre la dynamique de l'interaction plasma-paroi ainsi que la cinétique de formation des dépôts de carbone sur les composants et aideront au design des composants des machines futures (WEST, ITER). / This work deals with the successive resolution of two inverse heat transfer problems: the estimation of surface heat flux on a material and equivalent thermal conductivity of a surface layer on that material. The direct formulation is bidimensional, orthotropic (real geometry of a composite material), unsteady, non-linear and solved by finite elements. The studied materials are plasma facing components (carbon-carbon composite tiles) from Tokamak JET. The searched heat flux density varies with time and one dimension in space. The surface layers conductivity varies spatially and can vary with time during the experiment (the other thermophysical properties are temperature dependent). The two inverse problems are solved by the conjugate gradient method with the adjoint state method for the exact gradient calculation. The experimental data used for the first inverse problem resolution (surface heat flux estimation) is the thermogram provided by an embedded thermocouple. The second inverse problem uses the space and time variations of the surface temperature of the unknown surface layer (infrared thermography) for the conductivity identification. The confidence calculations associated to the estimated values are done by the Monte Carlo approach. The method developed during this thesis helps to the understanding of the plasma-wall interaction dynamic, as well as the kinetic of the surface carbon layer formation on the plasma facing components, and will be helpful to the design of the components of the future machines (WEST, ITER).
|
Page generated in 0.1323 seconds