• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 111
  • 58
  • 36
  • 15
  • 8
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 621
  • 270
  • 155
  • 144
  • 109
  • 99
  • 79
  • 70
  • 50
  • 50
  • 46
  • 44
  • 43
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Dithienopyrrole-based conjugated materials for organic electronics

Zhang, Xuan 26 October 2009 (has links)
Dithienopyrrole-based conjugated materials, including oligomers and polymers, for potential organic electronic applications, were designed, synthesized and characterized. The optical and electrochemical properties of these materials were investigated, and their structure-property relationships were studied. Some of the materials can be oxidized (or reduced) chemically or electrochemically. Furthermore, the utility of these materials in organic electronic devices, such as OFETs and OPVs, were assessed. In OFETs, they can function as hole-transport materials with mobilities up to 4.8 × 10-2 cm2/(Vs), and one example serves as an ambipolar material with comparable hole and electron mobilities of 1.2 × 10-3 and 5.8 ×10-4 cm2/(Vs), respectively. Some of the materials can also be used as electron donors in OPVs in conjunction with PCBM, and exhibited power conversion efficiencies up to 1.4% after optimizations. They may also be used in other applications such as electrochromic devices, photodetectors, and optical limiting.
32

Design, synthesis and photophysics of fluorescence "turn-on" conjugated polymer chemosensors

Fan, Li-juan. January 2006 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Chemistry, 2006. / Includes bibliographical references.
33

Conjugated Polymer Networks: Synthesis and Properties

Kokil, Akshay 18 July 2005 (has links)
No description available.
34

Metallopolyyne polymers based bulk heterojunction (BHJ) solar cells

Cheung, Kai-yin., 張啓賢. January 2009 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
35

Synthesis of structured phospholipids with conjugated linolenic acid, and evaluation of their physical properties

Quezada Arboleda, Nathalie 15 May 2009 (has links)
Structured phospholipids with conjugated linolenic acid were produced for potential applications in nutraceuticals and functional foods. Structured phospholipids were synthesized with conjugated linolenic acid (CLnA) from natural sources by catalytic enzymatic reaction. Pomegranate seed oil, as a natural source of CLnA, and an isomerized-concentrated mixture (ICM) of CLnA from flaxseed oil were used for the enzymatic reaction with phosphotidylcholine (PC) using Liposyme TL IM for fatty acid modification at 57 °C for 96 h. The enzymatic process was an effective way to produce structured phospholipids with CLnA. The maximum incorporation of CLnA from pomegranate seed oil and ICM from flaxseed oil into PC was 11.3% and 4.9% after 72 h, respectively. Structured lysophospholipids were also obtained as a result of the enzymatic reaction. The maximum incorporation of CLnA from pomegranate oil and ICM from flaxseed oil into lysophospholipids was 17.2% and 13.5% after 72h, respectively. Physical properties such as dropping point and viscosity at 40 and 50 °C of the structured phospholipids produced were measured when they were added to a chocolate mixture (unsweetened chocolate 94.6%, coconut oil 5% and 0.4 % phospholipids). Two controls were used for comparison: the chocolate mixture without phospholipids and the chocolate mixture with Lipoid S100 (phosphatidylcholine 94%). Structured phospholipids with CLnA showed lower dropping point and viscosities than the controls. Oil-in-water emulsions were prepared with whey protein (1%), soy bean oil (10%) and phospholipids (0.5%) in a high pressure homogenizer at 20MPa. The emulsion stability of the emulsions prepared, control (without phospholipids), Lipoid S 100 and structured phospholipids with CLnA were determined by visual observation of phase separation. The structured phospholipids emulsion showed higher emulsion stability than the controls. This emulsion was stable up to 108 h while the emulsion without phospholipid and Lipoid S100 were 48 h and 96 h stable, respectively. Oxidative stability of the emulsions prepared was determined by measuring the peroxide value and p-anisidine value after 1, 3 and 7 days at 50 °C. Oil was extracted from the emulsions using isooctane:isopropanol (3:2 v/v). The structured phospholipid emulsions showed lower oxidative stability than the controls.
36

Synthesis of Heterocyclic Poly(aryleneetheynylene)s

Bangcuyo, Carlito Ganayo 02 June 2006 (has links)
Poly(arylenenethynylene)s or PAEs are an interesting class of conjugated polymers that have potential uses in the field of thin film transistors, organic LEDs, sensors, and molecular wires. The field of PAEs have grown in recent years, however very few of its conjugated polymers have a heterocyclic motif contained within them. We have designed some conjugated heterocyclic polymers that contain quinoline, benzothidiazole, and quinoxaline. These polymers show interesting ionochromic and solvochromic effects as well as unusual solid state properties. Some of these polymers will demonstrate their ability to form fascinating nanostructures by use of either mesoporous discs or gold mediated nanotubes. Finally, we also have produced peralkynylated heterocyclic molecules for use in potential n-semiconductive devices. These molecules are not only aesthtically pleasing, but versatile molecules that could be used in conjugated PAEs.
37

Synthesis of structured phospholipids with conjugated linolenic acid, and evaluation of their physical properties

Quezada Arboleda, Nathalie 15 May 2009 (has links)
Structured phospholipids with conjugated linolenic acid were produced for potential applications in nutraceuticals and functional foods. Structured phospholipids were synthesized with conjugated linolenic acid (CLnA) from natural sources by catalytic enzymatic reaction. Pomegranate seed oil, as a natural source of CLnA, and an isomerized-concentrated mixture (ICM) of CLnA from flaxseed oil were used for the enzymatic reaction with phosphotidylcholine (PC) using Liposyme TL IM for fatty acid modification at 57 °C for 96 h. The enzymatic process was an effective way to produce structured phospholipids with CLnA. The maximum incorporation of CLnA from pomegranate seed oil and ICM from flaxseed oil into PC was 11.3% and 4.9% after 72 h, respectively. Structured lysophospholipids were also obtained as a result of the enzymatic reaction. The maximum incorporation of CLnA from pomegranate oil and ICM from flaxseed oil into lysophospholipids was 17.2% and 13.5% after 72h, respectively. Physical properties such as dropping point and viscosity at 40 and 50 °C of the structured phospholipids produced were measured when they were added to a chocolate mixture (unsweetened chocolate 94.6%, coconut oil 5% and 0.4 % phospholipids). Two controls were used for comparison: the chocolate mixture without phospholipids and the chocolate mixture with Lipoid S100 (phosphatidylcholine 94%). Structured phospholipids with CLnA showed lower dropping point and viscosities than the controls. Oil-in-water emulsions were prepared with whey protein (1%), soy bean oil (10%) and phospholipids (0.5%) in a high pressure homogenizer at 20MPa. The emulsion stability of the emulsions prepared, control (without phospholipids), Lipoid S 100 and structured phospholipids with CLnA were determined by visual observation of phase separation. The structured phospholipids emulsion showed higher emulsion stability than the controls. This emulsion was stable up to 108 h while the emulsion without phospholipid and Lipoid S100 were 48 h and 96 h stable, respectively. Oxidative stability of the emulsions prepared was determined by measuring the peroxide value and p-anisidine value after 1, 3 and 7 days at 50 °C. Oil was extracted from the emulsions using isooctane:isopropanol (3:2 v/v). The structured phospholipid emulsions showed lower oxidative stability than the controls.
38

New Series of Photoluminescent Polymers Containing 3,4-diphenylthiophene and 1,4-di(1,3,4-oxadiazolyl)phenylene

Hong, Chang-Chou 03 July 2003 (has links)
We plan to prepare conjugated polymers containing £k-excessive thiophene and £k-deficient oxadiazole group in the main chain, and introduction of phenyl or alkoxy groups on the side chain. The NMR, IR, TGA, DSC, GPC, stability, and other optical properties will be examined.
39

Electrochemical and electrogenerated chemiluminescence studies of the BODIPY dyes

Nepomnyashchii, Alexander Borisovich 03 January 2013 (has links)
Electrochemical and electrogenerated chemiluminescence properties of the BODIPY (boron dipyrromethene) dyes are presented. Some specific features of the BODIPY dyes are obtained and described in the current dissertation. Separation of around 1.0-1.2 V is noticed between two oxidation and reduction waves for one center which is very different from 0.5 V seen for the polycyclic hydrocarbons. Cathodic and anodic stability is shown to depend upon absence or presence of certain degree of substitution. Different ways of electrochemical dimerization are explored and compared with the chemical dimerization. Photophysical and electrochemical properties of monomer, chemically synthesized dimer, trimer and polymer are described and the characteristic features determined. / text
40

Single molecule study on the conformation, orientation and diffusion anisotropy of conjugated polymer chains in a liquid crystal matrix

Chang, Wei-Shun, 1973- 28 August 2008 (has links)
The nature of the solvent plays an important role in the conformation and orientation of polymers in solution. A particularly interesting case is when the solvent itself possesses order, such as when dissolving the polymer in a LC. In this dissertation, the morphology and diffusion behavior of the conjugated, stiff polymer MEH-PPV, (poly[2-methoxy-5((2-ethylhexyl)oxy)-1,4-phenylenevinylene]), in liquid crystal (LC) solvents have been investigated. Using polarization sensitive fluorescence correlation spectroscopy, it was found that in a nematic LC the polymer molecules are extended and highly aligned parallel with the nematic director. The conformation and orientational order of MEH-PPV increase with chain stiffness as a result of an interplay among the conformational entropy, solvation anisotropy, and bending energy of the polymer chains. In the smectic phase, about 10% of the MEH-PPV molecules are aligned perpendicular to the director in between the smectice layers, an effect not previously observed for a polymer solute. When applying an external electric field across the LC cell, the LC director changes orientation from a planar to a homeotropic alignment. The MEH-PPV chains remain aligned parallel with the LC director with applied field in the bulk of the LC device. However, the local structure near the LC-substrate interface is more complex. Single molecule polarization distributions measured as a function of distance from the LC device interface allow us to use MEH-PPV as sensitive local probe to explore complex structures in anisotropic media. Furthermore, diffusion anisotropy of the polymer solute in a LC solvent was studied by a novel two-beam cross-correlation technique. The diffusion anisotropy was observed to be about 2. This value is comparable to the diffusion anisotropy of the solvent and suggests that, despite the high degree of alignment, the solute diffusion is governed by the solvent and not the solute.

Page generated in 0.0498 seconds