• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 12
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Default reasoning and neural networks

Govender, I. (Irene) 06 1900 (has links)
In this dissertation a formalisation of nonmonotonic reasoning, namely Default logic, is discussed. A proof theory for default logic and a variant of Default logic - Prioritised Default logic - is presented. We also pursue an investigation into the relationship between default reasoning and making inferences in a neural network. The inference problem shifts from the logical problem in Default logic to the optimisation problem in neural networks, in which maximum consistency is aimed at The inference is realised as an adaptation process that identifies and resolves conflicts between existing knowledge about the relevant world and external information. Knowledge and data are transformed into constraint equations and the nodes in the network represent propositions and constraint equations. The violation of constraints is formulated in terms of an energy function. The Hopfield network is shown to be suitable for modelling optimisation problems and default reasoning. / Computer Science / M.Sc. (Computer Science)
32

Modelo neural por padrões proximais de aprendizagem para automação personalizada de conteúdos didáticos

Melo, Francisco Ramos de 25 March 2012 (has links)
This study presents a model for the organization of educational content customized for environments of individual studies. For many students the availability of content in general form can not be efficient. It proposed a multilevel structure of concepts to provide the development of different combinations to show the same content. The work shows that it is possible to customize the content in order to encourage other students with the use of proximal learning standards. These patterns are obtained from the analysis of the action of students with positive results in the individual organization of the content. The formal representation establishes the definition of the student profile, multi-level content, the distribution plan of correction of concepts and teaching career. The structure of the trajectory of student teaching is formally established by the method of finite differences. The system uses artificial intelligence techniques to organize and personalize content reactively. Customization is provided by an artificial neural network that enables the classification of the student profile and assign that profile to a standard proximal learning. To mediate and adjust the contents of a reactive system was inserted into a set of rules from experts in teaching. The experiment showed the applicability and appropriateness of the proposed model. The results indicated the suitability of the approach by automating the organization\'s custom content so adaptive and reactive. The intelligent system to establish the structure of the custom content to be presented was considered efficient, giving the student a better use of the content, with higher and lower final average study time and content presented. / Este trabalho apresenta uma modelagem para a organização personalizada de conteúdos didáticos para ambientes de estudos individuais. Para muitos estudantes a disponibilização do conteúdo em formato generalizado pode não ser eficiente. É proposta uma estrutura multinível de conceitos para proporcionar o desenvolvimento de diferentes combinações para a apresentação do mesmo conteúdo. O trabalho mostra que é possível personalizar o conteúdo de forma a favorecer outros estudantes com o uso de padrões proximais de aprendizagem. Estes padrões são obtidos da análise da ação de estudantes, com resultados positivos na organização individual do conteúdo. A representação formal estabelece a definição do perfil do estudante, o conteúdo multinível, o plano de distribuição dos conceitos e a correção da trajetória didática. A estruturação da trajetória didática do estudante é formalmente estabelecida pelo método das diferenças finitas. O sistema utiliza técnicas de inteligência artificial para organizar e personalizar reativamente o conteúdo. A personalização é proporcionada por uma rede neural artificial que possibilita a classificação do perfil do estudante e associa esse perfil a um padrão proximal de aprendizagem. Para mediar e ajustar o conteúdo de forma reativa foi inserido no sistema um conjunto de regras de especialistas em docência. O experimento realizado mostrou a aplicabilidade e a adequação da modelagem proposta. Os resultados indicaram a adequação da abordagem, automatizando a organização personalizada do conteúdo de forma adaptativa e reativa. O sistema inteligente ao estabelecer a estruturação personalizada do conteúdo a ser apresentado foi considerado eficiente, proporcionando ao estudante um melhor aproveitamento do conteúdo, com maior média final e menor tempo de estudo e conteúdo apresentado. / Doutor em Ciências

Page generated in 0.1004 seconds