• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 10
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mapping the mouse connectome with voxel resolution

Coletta, Ludovico 01 April 2022 (has links)
Fine-grained descriptions of brain connectivity are required to understand how neural information is processed and relayed across spatial scales. Prior investigations of the mouse brain connectome have employed discrete anatomical parcellations, limiting spatial resolution and potentially concealing network attributes critical to connectome organization. In this work, we provide a voxel-level description of the network and hierarchical structure of the directed mouse connectome, unconstrained by regional partitioning. We found that hub regions and core network components of the voxel-wise mouse connectome exhibit a rich topography encompassing key cortical and subcortical relay regions. We also typified regional substrates based on their directional topology into sink or source regions, and reported a previously unappreciated role of modulatory nuclei as critical effectors of inter-modular and network communicability. Finally, we demonstrated a close spatial correspondence between the mesoscale topography of the mouse connectome and its functional macroscale organization, showing that, like in primates and humans, the mouse cortical connectome is organized along two major topographical axes that can be linked to hierarchical patterns of laminar connectivity, and shape the topography of fMRI dynamic states, respectively. This investigation was paralleled by further studies aimed to more closely relate structural connectome features to the corresponding large scale functional networks of the mouse brain. We first focused on the mouse default mode network (DMN), describing its axonal substrates with sublaminar precision and cell-type specificity. We found that regions of the mouse DMN are predominantly located within the isocortex and exhibit preferential connectivity. Dedicated tract tracing experiments carried out by the Allen Brain Institute revealed that layer 2/3 DMN neurons projected mostly in the DMN, whereas layer 5 neurons project both in and out. Further analyses revealed the presence of separate in-DMN and out-DMN-projecting cell types with distinct genetic profiles. Lastly, we carried out a fine-grained comparison of functional topography and dynamic organization of large-scale fMRI networks in wakeful and anesthetized mice, relating the corresponding functional networks to the underlying architecture of structural connectivity. Recapitulating prior observations in conscious primates, we found that the awake mouse brain is subjected to a profound topological reconfiguration such to maximize cross-talk between cortical and subcortical neural systems, departing from the underlying structure of the axonal connectome. Taken together, these results advance our understanding of the foundational wiring principles of the mammalian connectome, and create opportunities for identifying targets of interventions to modulate brain function and its network structure in a physiologically-accessible species.
2

Unraveling The Connectome: Visualizing and Abstracting Large-Scale Connectomics Data

Al-Awami, Ali K. 30 April 2017 (has links)
We explore visualization and abstraction approaches to represent neuronal data. Neuroscientists acquire electron microscopy volumes to reconstruct a complete wiring diagram of the neurons in the brain, called the connectome. This will be crucial to understanding brains and their development. However, the resulting data is complex and large, posing a big challenge to existing visualization techniques in terms of clarity and scalability. We describe solutions to tackle the problems of scalability and cluttered presentation. We first show how a query-guided interactive approach to visual exploration can reduce the clutter and help neuroscientists explore their data dynamically. We use a knowledge-based query algebra that facilitates the interactive creation of queries. This allows neuroscientists to pose domain-specific questions related to their research. Simple queries can be combined to form complex queries to answer more sophisticated questions. We then show how visual abstractions from 3D to 2D can significantly reduce the visual clutter and add clarity to the visualization so that scientists can focus more on the analysis. We abstract the topology of 3D neurons into a multi-scale, relative distance-preserving subway map visualization that allows scientists to interactively explore the morphological and connectivity features of neuronal cells. We then focus on the process of acquisition, where neuroscientists segment electron microscopy images to reconstruct neurons. The segmentation process of such data is tedious, time-intensive, and usually performed using a diverse set of tools. We present a novel web-based visualization system for tracking the state, progress, and evolution of segmentation data in neuroscience. Our multi-user system seamlessly integrates a diverse set of tools. Our system provides support for the management, provenance, accountability, and auditing of large-scale segmentations. Finally, we present a novel architecture to render very large volumes interactively. We focus on two aspects: (1) Segmented objects are often toggled on and off by an interactive query, which makes it unfeasible to pre-compute a well-adapted space subdivision. (2) To scale to large data, culling and empty-space skipping must scale with the output size instead of the input volume. Our approach combines the advantages of object- and image-order stages of the empty-space skipping process.
3

Using brain connectomics to detect functional connectivity differences in Alzheimer's disease

Contreras, Joey Annette 10 July 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Prodromal Alzheimer’s disease (AD) has recently been identified as a disease state where pathophysiological changes may progress despite the absence of significant clinical symptoms. Yet, the specific processes of neural dysfunction occurring during this preclinical phase remain unclear. Resting state fMRI (RS-fMRI) in combination with brain connectomic measurements may be able to provide ways to measure subtle connectivity changes in different neurological disease states. For instance, RS-fMRI scans allow us to determine functionally connected yet spatially distinct brain regions that can then be separated into resting-state networks (RSNs). More recently, the exploration of RSNs in disease states have proved promising since they have been reliably altered when compared to a control population. By using brain connectomic approaches to assess functional connectivity we can evaluate the human connectome from a different and more global perspective to help us better understand and detect prodromal neurodegenerative disease states.
4

Architecture of Tunneling Nanotubes : a Structural Approach / Architecture des tunneling nanotubes : une approche structurelle

Cordero Cervantes, Diego 03 December 2019 (has links)
On a longtemps pensé que la communication intercellulaire était essentiellement régie par les signalisations juxta-, endo- et paracrine, les gap junctions et, plus récemment, les exosomes. Cependant, les travaux de plusieurs groupes dont le nôtre ont révélé que les Tunneling Nanotubes (TNT), des protrusions membranaires riches en actine qui relient le cytoplasme de cellules distantes et permettent le transport intercellulaire dynamique de leur contenu biologique, fournissent également l'infrastructure et les machines pour une communication efficace entre cellules. Malgré des progrès significatifs, la caractérisation de ces nouveaux organites a été limitée par le manque d'informations moléculaires et structurelles. Combler ces lacunes à l'aide d'une série d'outils de pointe et d'approches novatrices est devenu l'objectif principal de ma thèse. Plus précisément, j'ai exploré le rôle des complexes régulateurs de l’actine dans la formation des TNT reliant les cellules neuronales. Mes analyses montrent que les voies moléculaires connues pour être impliquées dans la formation d'autres protrusions membranaires régulent différemment la génération des TNT. En utilisant la microscopie par imagerie en direct, la microscopie électronique cryocorrélative et la tomographie, j'ai également étudié la nano-architecture des TNT neuronaux. Mes découvertes ont démontré que les TNT des cellules neuronales sont composés de plusieurs TNT individuels permettant le passage de vésicules et de mitochondries. En raison des difficultés d'identification des TNT in vivo, mes travaux ont également porté sur la mise en œuvre d'une approche « Connectomic » structurelle pour détecter les TNT dans les tissus sans avoir besoin d'un marqueur spécifique de TNT. Mes résultats indiquent que des structures de type TNT relient les cellules granulaires cérébelleuses migratrices des souris nouveau-nées, ce qui suggère que la communication intercellulaire pendant des événements migratoires dans le cerveau pourrait être médiée par des processus mettant en jeu des TNT. La squelettisation des structures identifiées fournit des informations géométriques qui corroborent les observations faites dans des expériences de couplage de colorants. L'ensemble de mes travaux de thèse fait la lumière sur la formation et la structure des TNT neuronaux in vitro et sur de nouvelles approches pour l'identification des TNT in vivo. / Inter-cellular communication has long been thought to be governed by juxta-, endo-, and paracrine signaling, tight junctions, and more recently, exosomes. However, large efforts from our and other groups revealed that Tunneling Nanotubes (TNTs), actin-rich membranous protrusions that connect the cytoplasm of distant cells and allow the dynamic inter-cellular transport of biological cargo, also provide the infrastructure and machinery for effective cell-to-cell communication. Despite significant progress made to unveil TNT-mediated cell communication, the characterization of these novel organelles has been limited by unanswered questions that hail from the lack of both molecular and structural information. Exploring these gaps in the field using a series of state-of-the-art tools and novel approaches became the main focus of my dissertation. Specifically, I explored the specific role of actin-regulator complexes in the formation of TNTs connecting neuronal cells. My analyses show that molecular pathways known to be involved in the formation of other membranous protrusions behave differently in the generation of TNTs. By employing live imaging microscopy, cryo-correlative electron microscopy and tomography approaches, I also studied the nano- architecture of neuronal TNTs. My findings demonstrated that TNTs of neuronal cells are comprised of multiple individual TNTs capable of transporting vesicles and mitochondria. Owing to the difficulties of identifying TNTs in vivo, my work also focused on the implementation of a structural Connectomic approach to detect TNTs in tissue without the need for a TNT-specific marker. My findings indicate that TNT-like structures connect migratory cerebellar granule cells of neonate mice, suggesting that inter-cellular communication during migratory events in the brain could be mediated by TNT-like processes. Skeletonization of the structures identified provide my findings with geometrical information that can be compared with observations made by corroborative dye-coupling experiments. Taken together, my dissertation work sheds light on the formation and structure of neuronal TNTs in vitro, and novel approaches for the identification of TNTs in vivo.
5

Large-scale circuit reconstruction in medial entorhinal cortex

Schmidt-Helmstaedter, Helene 28 May 2018 (has links)
Es ist noch weitgehend ungeklärt, mittels welcher Mechanismen die elektrische Aktivität von Nervenzellpopulationen des Gehirns Verhalten ermöglicht. Die Orientierung im Raum ist eine Fähigkeit des Gehirns, für die im Säugetier der mediale entorhinale Teil der Großhirnrinde als entscheidende Struktur identifiziert wurde. Hier wurden Nervenzellen gefunden, die die Umgebung des Individuums in einer gitterartigen Anordnung repräsentieren. Die neuronalen Schaltkreise, welche diese geordnete Nervenzellaktivität im medialen entorhinalen Kortex (MEK) ermöglichen, sind noch wenig verstanden. Die vorliegende Dissertation hat eine Klärung der zellulären Architektur und der neuronalen Schaltkreise in der zweiten Schicht des MEK der Ratte zum Ziel. Zunächst werden die Beiträge zur Entdeckung der hexagonal angeordneten zellulären Anhäufungen in Schicht 2 des MEK sowie zur Beschreibung der Dichotomie der Haupt-Nervenzelltypen dargestellt. Im zweiten Teil wird erstmalig eine konnektomische Analyse des MEK beschrieben. Die detaillierte Untersuchung der Architektur einzelner exzitatorischer Axone ergab das überraschende Ergebnis der präzisen Sortierung von Synapsen entlang axonaler Pfade. Die neuronalen Schaltkreise, in denen diese Neurone eingebettet sind, zeigten eine starke zeitliche Bevorzugung der hemmenden Neurone. Die hier erhobenen Daten tragen zu einem detaillierteren Verständnis der neuronalen Schaltkreise im MEK bei. Sie enthalten die erste Beschreibung überraschend präziser axonaler synaptischer Ordnung im zerebralen Kortex der Säugetiere. Diese Schaltkreisarchitektur lässt einen Effekt auf die Weiterleitung synchroner elektrischer Populationsaktivität im MEK vermuten. In zukünftigen Studien muss insbesondere geklärt werden, ob es sich bei den hier berichteten Ergebnissen um eine Besonderheit des MEK oder ein generelles Verschaltungsprinzip der Hirnrinde des Säugetiers handelt. / The mechanisms by which the electrical activity of ensembles of neurons in the brain give rise to an individual’s behavior are still largely unknown. Navigation in space is one important capacity of the brain, for which the medial entorhinal cortex (MEC) is a pivotal structure in mammals. At the cellular level, neurons that represent the surrounding space in a grid-like fashion have been identified in MEC. These so-called grid cells are located predominantly in layer 2 (L2) of MEC. The detailed neuronal circuits underlying this unique activity pattern are still poorly understood. This thesis comprises studies contributing to a mechanistic description of the synaptic architecture in rat MEC L2. First, this thesis describes the discovery of hexagonally arranged cell clusters and anatomical data on the dichotomy of the two principle cell types in L2 of the MEC. Then, the first connectomic study of the MEC is reported. An analysis of the axonal architecture of excitatory neurons revealed synaptic positional sorting along axons, integrated into precise microcircuits. These microcircuits were found to involve interneurons with a surprising degree of axonal specialization for effective and fast inhibition. Together, these results contribute to a detailed understanding of the circuitry in MEC. They provide the first description of highly precise synaptic arrangements along axons in the cerebral cortex of mammals. The functional implications of these anatomical features were explored using numerical simulations, suggesting effects on the propagation of synchronous activity in L2 of the MEC. These findings motivate future investigations to clarify the contribution of precise synaptic architecture to computations underlying spatial navigation. Further studies are required to understand whether the reported synaptic specializations are specific for the MEC or represent a general wiring principle in the mammalian cortex.
6

Connectomics of extrasynaptic signalling : applications to the nervous system of Caenorhabditis elegans

Bentley, Barry January 2017 (has links)
Connectomics – the study of neural connectivity – is primarily concerned with the mapping and characterisation of wired synaptic links; however, it is well established that long-distance chemical signalling via extrasynaptic volume transmission is also critical to brain function. As these interactions are not visible in the physical structure of the nervous system, current approaches to connectomics are unable to capture them. This work addresses the problem of missing extrasynaptic interactions by demonstrating for the first time that whole-animal volume transmission networks can be mapped from gene expression and ligand-receptor interaction data, and analysed as part of the connectome. Complete networks are presented for the monoamine systems of Caenorhabditis elegans, along with a representative sample of selected neuropeptide systems. A network analysis of the synaptic (wired) and extrasynaptic (wireless) connectomes is presented which reveals complex topological properties, including extrasynaptic rich-club organisation with interconnected hubs distinct from those in the synaptic and gap junction networks, and highly significant multilink motifs pinpointing locations in the network where aminergic and neuropeptide signalling is likely to modulate synaptic activity. Thus, the neuronal connectome can be modelled as a multiplex network with synaptic, gap junction, and neuromodulatory layers representing inter-neuronal interactions with different dynamics and polarity. This represents a prototype for understanding how extrasynaptic signalling can be integrated into connectomics research, and provides a novel dataset for the development of multilayer network algorithms.
7

Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire. / The human brain language connectome : Structural and fonctional study using DTI tractography, functional MRI and intraoperative electrical stimulation

Vassal, François 27 June 2016 (has links)
Si les régions cérébrales du langage ont étélargement explorées grâce à l’IRM fonctionnelle (IRMf) et la stimulation électrique directe (SED)peropératoire, leur connectivité reste encore incomplètement documentée. Il n’est pas seulement débattuquels faisceaux de SB contribuent au langage, mais également quelle est leur anatomie précise et leur rôlefonctionnel spécifique. Une meilleure compréhension du connectome du langage est requise pourdiminuer la morbidité postopératoire en neurochirurgie et développer de nouveaux traitements cibléspour la rééducation des aphasies. Notre objectif était de cartographier structurellement etfonctionnellement, in vivo, la connectivité du langage. Dans une première étude préclinique portant sur 2Oadultes sains, nous avons combiné des informations structurelles axonales révélées par la tractographieavec des informations fonctionnelles corticales dérivées de l’IRMf (tâche de lecture compréhensive). Huitfaisceaux de SB ont été explorés —i.e. faisceau arqué, faisceau longitudinal supérieur, faisceau frontooccipitalinférieur, faisceau unciné, faisceau longitudinal inférieur, faisceau longitudinal moyen, faisceauoperculo-prémoteur, faisceau frontal transverse—, dont le rôle fonctionnel a été analysé en recherchantune connexion entre leurs terminaisons corticales et les activations IRMf. Les caractéristiquesanatomiques des faisceaux (i.e. volume, longueur, terminaisons corticales), leurs asymétries interhémisphériqueset leurs variations interindividuelles ont été colligées. Ce protocole a permis deconstruire le connectome du langage et d’étudier en détails son organisation structurelle macroscopique.Dans une seconde partie, ces données ont été transposées à la clinique pour le traitement chirurgical depatients souffrant de tumeurs cérébrales (gliomes) en régions du langage. Pendant la résection tumorale,des images de tractographie intégrées à un système de neuronavigation ont été systématiquementcombinées à la SED au cours d’un test de dénomination orale d’images. Ce protocole opératoire a permisd’optimiser les résultats chirurgicaux en termes de qualité d’exérèse et de préservation du langage, et aconstitué une opportunité unique d’étudier en temps réel les corrélations structure – fonction. Encouplant la localisation anatomique précise où chaque SED a été délivrée —obtenue grâce aux images detractographie naviguées— et la sémiologie des paraphasies induites par la SED —colligée par unorthophoniste présent au bloc opératoire—, nous avons déterminé le rôle spécifique de 5 faisceaux tantcortico-corticaux (faisceau arqué, faisceau fronto-occipital inférieur, faisceau frontal transverse) quecortico-sous-corticaux (fibres prémotrices orofaciales, faisceau fronto-striatal) dans différentes souscomposantesdu langage, i.e. traitement phonologique, traitement sémantique, contrôle moteur,planification articulatoire, contrôle exécutif/cognitif de la réponse verbale. Considérés de façon globale,nos résultats permettent d’envisager une meilleure compréhension de l’organisation anatomofonctionnelledes réseaux cérébraux du langage. Au-delà de l’intérêt scientifique, la possibilité deconstruire le connectome du langage spécifique à chaque individu ouvre la voie vers d’importantesapplications en neurochirurgie, dans une perspective de médecine personnalisée. Aujourd’hui, la chirurgiedes tumeurs cérébrales guidée par l’image. Demain, le développement de nouveaux traitements pour larééducation des aphasies, e.g. la déposition ciblée d’agents pharmacologiques, de cellules souches ou deneuromodulations, interagissant directement avec la connectivité résiduelle épargnée par la lésion. / The langage connectome is defined as the neuronal networks that subserve languagefunctions. Anatomically, it comprises specialized cortical areas and modulatory subcortical areas (i.e. deepgray nuclei and cerebellum), as well as their interconnections trough white matter (WM) fascicles.Although brain regions involved in language have been largely explored thanks to functional MRI (fMRI)and intraoprative electrical stimulation (IES), the underlying WM connectivity is still not mastered. It isnot only unknown which WM fascicles specifically contribute to language, but there is also much debateabout their precise anatomy and the functions they subserve during language processing. Betterunderstanding of the structural and functional organization of the language connectome is requisite toreduce postoperative morbidity in neurosurgery and develop targeted treatments for aphasiarehabilitation. Herein, our objective was to map structurally and functionally, in vivo, the subcorticalconnectivity of language. First, we conducted a preclinical study in 20 healthy subjects, combining DTItractography and fMRI (reading comprehension task) to yield connectivity associated with language. Weexplored 8 WM fascicles that have been proposed as putative candidates for language —i.e. arcuatefascicle, superior longitudinal fascicle, inferior fronto-occipital fascicle, uncinate fascicle, inferiorlongitudinal fascicle, middle longitudinal fascicle, operculopremotor fascicle, frontal aslant tract—, towhich we assigned functionality by tracking their connections to the fMRI-derived clusters. We generateda normative database of anatomical characteristics for each WM fascicle, such as volume, length, corticalterminations and their interhemispheric and interindividual variations. By using this construct, weprovided in explicit details the structural map of the language connectome. Second, this body ofknowledge was transposed to brain tumor surgery. Patients suffering of gliomas located close to languageregions were operated on under local anesthesia (i.e. awake surgery) in order to perform intraoperativelanguage mapping (object naming task). Essential language sites were localized through IES andanatomically characterized thanks to navigated tractography images. This intraoperative protocol allowedmaximum tumor resection while preserving language functions. Furthermore, it gave us a uniqueopportunity to perform reliable, real-time structure – function relationships, determining the role of 5WM fascicles (arcuate fascicle, inferior fronto-occipital fascicle, frontal aslant tract, orofacial premotorfibers, frontostriatal fascicle) in different subcomponents of language, i.e. phonological processing,semantic processing, articulatory planning, motor control and executive/cognitive control of verbalresponse. Globally considered, our results allow a better understanding of the anatomo-functionalorganization of the language network in the human brain. Beyond the scientific interest, the possibility toconstruct the individual (patient-specific) connectome paves the way for major applications inneurosurgery, in the perspective of personalized medicine. Today, the maximum safe resection of braintumors located in eloquent language areas, guided by navigated, multimodal images. Tomorrow, thedevelopment of new treatments for rehabilitation of post-stroke aphasia patients, such as the targeteddelivery of drugs, stem cells, or neuromodulation devices, fitting with the residual functional connectivityspared by the lesion.
8

Data Science Approaches on Brain Connectivity: Communication Dynamics and Fingerprint Gradients

Uttara Vinay Tipnis (10514360) 07 May 2021 (has links)
<div>The innovations in Magnetic Resonance Imaging (MRI) in the recent decades have given rise to large open-source datasets. MRI affords researchers the ability to look at both structure and function of the human brain. This dissertation will make use of one of these large open-source datasets, the Human Connectome Project (HCP), to study the structural and functional connectivity in the brain.</div><div>Communication processes within the human brain at different cognitive states are neither well understood nor completely characterized. We assess communication processes in the human connectome using ant colony-inspired cooperative learning algorithm, starting from a source with no <i>a priori</i> information about the network topology, and cooperatively searching for the target through a pheromone-inspired model. This framework relies on two parameters, namely <i>pheromone</i> and <i>edge perception</i>, to define the cognizance and subsequent behaviour of the ants on the network and the communication processes happening between source and target. Simulations with different configurations allow the identification of path-ensembles that are involved in the communication between node pairs. In order to assess the different communication regimes displayed on the simulations and their associations with functional connectivity, we introduce two network measurements, effective path-length and arrival rate. These measurements are tested as individual and combined descriptors of functional connectivity during different tasks. Finally, different communication regimes are found in different specialized functional networks. This framework may be used as a test-bed for different communication regimes on top of an underlying topology.</div><div>The assessment of brain <i>fingerprints</i> has emerged in the recent years as an important tool to study individual differences. Studies so far have mainly focused on connectivity fingerprints between different brain scans of the same individual. We extend the concept of brain connectivity fingerprints beyond test/retest and assess <i>fingerprint gradients</i> in young adults by developing an extension of the differential identifiability framework. To do so, we look at the similarity between not only the multiple scans of an individual (<i>subject fingerprint</i>), but also between the scans of monozygotic and dizygotic twins (<i>twin fingerprint</i>). We have carried out this analysis on the 8 fMRI conditions present in the Human Connectome Project -- Young Adult dataset, which we processed into functional connectomes (FCs) and time series parcellated according to the Schaefer Atlas scheme, which has multiple levels of resolution. Our differential identifiability results show that the fingerprint gradients based on genetic and environmental similarities are indeed present when comparing FCs for all parcellations and fMRI conditions. Importantly, only when assessing optimally reconstructed FCs, we fully uncover fingerprints present in higher resolution atlases. We also study the effect of scanning length on subject fingerprint of resting-state FCs to analyze the effect of scanning length and parcellation. In the pursuit of open science, we have also made available the processed and parcellated FCs and time series for all conditions for ~1200 subjects part of the HCP-YA dataset to the scientific community.</div><div>Lastly, we have estimated the effect of genetics and environment on the original and optimally reconstructed FC with an ACE model.</div>
9

Traitement d’images de microscopie confocale 3D haute résolution du cerveau de la mouche Drosophile / Three-dimensional image analysis of high resolution confocal microscopy data of the Drosophila melanogaster brain

Murtin, Chloé Isabelle 20 September 2016 (has links)
La profondeur possible d’imagerie en laser-scanning microscopie est limitée non seulement par la distance de travail des lentilles de objectifs mais également par la dégradation de l’image causée par une atténuation et une diffraction de la lumière passant à travers l’échantillon. Afin d’étendre cette limite, il est possible, soit de retourner le spécimen pour enregistrer les images depuis chaque côté, or couper progressivement la partie supérieure de l’échantillon au fur et à mesure de l‘acquisition. Les différentes images prises de l’une de ces manières doivent ensuite être combinées pour générer un volume unique. Cependant, des mouvements de l’échantillon durant les procédures d’acquisition engendrent un décalage non seulement sur en translation selon les axes x, y et z mais également en rotation autour de ces même axes, rendant la fusion entres ces multiples images difficile. Nous avons développé une nouvelle approche appelée 2D-SIFT-in-3D-Space utilisant les SIFT (scale Invariant Feature Transform) pour atteindre un recalage robuste en trois dimensions de deux images. Notre méthode recale les images en corrigeant séparément les translations et rotations sur les trois axes grâce à l’extraction et l’association de caractéristiques stables de leurs coupes transversales bidimensionnelles. Pour évaluer la qualité du recalage, nous avons également développé un simulateur d’images de laser-scanning microscopie qui génère une paire d’images 3D virtuelle dans laquelle le niveau de bruit et les angles de rotations entre les angles de rotation sont contrôlés avec des paramètres connus. Pour une concaténation précise et naturelle de deux images, nous avons également développé un module permettant une compensation progressive de la luminosité et du contraste en fonction de la distance à la surface de l’échantillon. Ces outils ont été utilisés avec succès pour l’obtention d’images tridimensionnelles de haute résolution du cerveau de la mouche Drosophila melanogaster, particulièrement des neurones dopaminergiques, octopaminergiques et de leurs synapses. Ces neurones monoamines sont particulièrement important pour le fonctionnement du cerveau et une étude de leur réseau et connectivité est nécessaire pour comprendre leurs interactions. Si une évolution de leur connectivité au cours du temps n’a pas pu être démontrée via l’analyse de la répartition des sites synaptiques, l’étude suggère cependant que l’inactivation de l’un de ces types de neurones entraine des changements drastiques dans le réseau neuronal. / Although laser scanning microscopy is a powerful tool for obtaining thin optical sections, the possible depth of imaging is limited by the working distance of the microscope objective but also by the image degradation caused by the attenuation of both excitation laser beam and the light emitted from the fluorescence-labeled objects. Several workaround techniques have been employed to overcome this problem, such as recording the images from both sides of the sample, or by progressively cutting off the sample surface. The different views must then be combined in a unique volume. However, a straightforward concatenation is often not possible, because the small rotations that occur during the acquisition procedure, not only in translation along x, y and z axes but also in rotation around those axis, making the fusion uneasy. To address this problem we implemented a new algorithm called 2D-SIFT-in-3D-Space using SIFT (scale Invariant Feature Transform) to achieve a robust registration of big image stacks. Our method register the images fixing separately rotations and translations around the three axes using the extraction and matching of stable features in 2D cross-sections. In order to evaluate the registration quality, we created a simulator that generates artificial images that mimic laser scanning image stacks to make a mock pair of image stacks one of which is made from the same stack with the other but is rotated arbitrarily with known angles and filtered with a known noise. For a precise and natural-looking concatenation of the two images, we also developed a module progressively correcting the sample brightness and contrast depending on the sample surface. Those tools we successfully used to generate tridimensional high resolution images of the fly Drosophila melanogaster brain, in particular, its octopaminergic and dopaminergic neurons and their synapses. Those monoamine neurons appear to be determinant in the correct operating of the central nervous system and a precise and systematic analysis of their evolution and interaction is necessary to understand its mechanisms. If an evolution over time could not be highlighted through the pre-synaptic sites analysis, our study suggests however that the inactivation of one of these neuron types triggers drastic changes in the neural network.
10

Chapter 1: In Search of Innate Leadership : Discovering, Evaluating and Understanding Innateness

Morra, Erica, Zenker, Lisa January 2014 (has links)
Every individual is born with different natural competencies that can be honed by both voluntary and involuntary environmental stimuli. The response our genotype decides to make, if any, towards those stimuli, determines how well our competencies develop. Each person’s coding and variations of genes will result in unique qualities in their phenotype, or physical structure. As a result, a person has various traits that are displayed through their behavior. DNA is genetically shown to express itself through traits by up to 75%. This leaves a sort of buffer of around 25%. This region is available for us to adapt to our environmental stimuli. Your innate qualities will not reach their full potential without stimulation from the environment, in a leadership case, with education and training and therefore it can be argued that environmental exposure is necessary to fully expose the potentials and capabilities of an individual, rather than instill a new skill or develop a talent that was not existent before. Innate leadership is not a permanent state, on the contrary, it is a continuously adaptive situation demanding contextual evolutionary changes or resignation from the subject occupying the role. When the needs and demands of a society or era outweigh the relevance of the innate leaders' traits and competencies, an evolution of leadership is needed to maintain a positive relationship between all parties involved. As a result, the innate leader will begin to lose their innateness in their role and unless they evolve and adapt (because the two actions are not the same) to new contextual needs, their tenure as leader will begin to be detrimental and counter-functional. What we want to put forward is a real, universal and constructive understanding of what makes a human happy, motivated and productive and how an innate person in context is a much better solution in the short and long run, for those around them when put to a task.

Page generated in 0.4271 seconds