1 |
The specification of a consumer design toolkit to support personalised production via additive manufacturingSinclair, Matthew January 2012 (has links)
This thesis stems from the future scenario that as additive manufacturing (AM) technologies become cheaper and more readily available, consumers without formal design training will begin to customise, design and manufacture their own products. Much of this activity is likely to infringe on brands' intellectual property. The research explores the feasibility of a situation in which, rather than attempting to prohibit such activity, manufacturers engage with consumers to facilitate it, thus retaining control (albeit reduced) over their brand's image and the quality of products offered. The research begins with a literature review encompassing AM technologies and their adoption by consumers; mass customisation (MC) and the management of variation in product offering; and traditional models of industrial design (ID), including user-centred design and co-design. It finds that conventional definitions of MC and ID are unable to provide for the possibility of consumer intervention in the shape and non-modular configuration of products. Further research was then conducted in the areas of Open Design (including crowdsourcing, open sourcing and 'hardware hacking') as well as bespoke customisation, which were found to be much more accommodating of the scenario proposed. A new term, 'consumer design', is introduced and defined, together with the hypothesis that in future, the role of the industrial designer may be to design 'unfinished' products. An original classification of consumer involvement in ID is presented. Empirical research, undertaken with consumers using an iterative design software package (Genoform), demonstrated a preference for designing within pre-determined boundaries. Action research was conducted to assess consumer-oriented 3D CAD software, and compare its capabilities with that of MC toolkits. A survey of senior designers and brand managers revealed strategies for implementing and managing a brand's product design language, and a guide was created to show the relative importance of designed features. Using these findings, a prototype toolkit was created to demonstrate how a brand might facilitate consumer interaction with the shape design of a complex consumer electronics product (in this case a mobile phone). The toolkit was tested with both consumers and experienced designers to assess its viability. The research finds that it is possible to create a consumer-design toolkit which enables untrained users to change the form of a product, whilst maintaining brand equity and ensuring the product's functionality and manufacturability.
|
2 |
Facilitating consumer involvement in design for additive manufacturing/3D printing productsAriadi, Yudhi January 2016 (has links)
This research investigates the potential of the general public to actively design their own products and let consumers either manufacture by themselves or send the files to manufacturers to be produced. This approach anticipates the rapid growth of fabrication technology, particularly in Additive Manufacturing (AM)/3D printing. Recent developments in the field of AM/3D printing have led to renewed interest in how to manufacture customised products and in a way that will allow consumers to create bespoke products more easily. These technologies can enhance the understanding of non-technology compliant consumers and bring the manufacturing process closer to them. Consequently, to make AM/3D printing more accessible and easier to employ by the general public, design aspects need to be developed to be as simple to operate in the same manner as AM/3D printing technologies. These technologies will then attract consumers who want to produce Do-It-Yourself (DIY) products. This study suggests a Computer-aided Consumer Design (CaCODE) system as user- friendly design software to simplify the Computer Aided Design (CAD) stages that are required to produce 3D model data required by the AM/3D printing process. This software will be an easy-to-operate design system where consumers interact with parameters of designed forms easily instead of operating conventional CAD. In addition, this research investigates the current capabilities of AM/3D printing technologies in producing consumer products. To uncover the potential of consumer-led design and manufacturing, CaCODE has been developed for consumer evaluation, which is needed to measure the appropriateness of the tool. In addition, a range of consumer product samples as pens has been built using a range of different materials, AM/3D printing technologies and additional post-processing methods. This was undertaken to evaluate consumer acceptance of the AM/3D printed product based on products perceived quality. Forty non-designer participants, 50% male and 50% female, from 5 to 64 years old, 6-7 participants per ten-year age groups in 6 groups, were recruited. The results indicated that 75% of the participants would like to design their own product using consumer design software. The study compared how consumers interacted with the 3D model to manipulate the shape by using two methods: indirect manipulation (sliders) and direct manipulation (drag points). The majority of the participants would prefer to use the direct manipulation because they felt it was easy to use and enabled them to enjoy the design process. The study concluded that the direct manipulation was more acceptable because it enabled users to touch the digital product and manipulate it, making it more intuitive and natural. The research finds that there is a potential for consumers to design a product using user-friendly design tools. Using these findings, a consumer design tool concept was created for future development. The study indicated that 53% of participants would like to use products made by AM/3D printing although they still wanted the surface finish of injection moulded parts. However, the AM/3D printing has advantages that can fulfil the participants preference such as multi-materials from the material jetting method and it is proved that additional post-processing can increase participants acceptance level.
|
3 |
I Create; Therefore, I Am: Design Endeavors as a Signal of SelfJanuary 2015 (has links)
abstract: This interpretive research examines the phenomenon of people who engage in designing for themselves in a world in which this is no longer necessary. For in this Schumpeterian society – one can simply purchase from a plethora of products and services that are designed by professionals, generated by producers, and made available for purchase via a myriad of channels. So why do people bother designing for ourselves? Drawing on in-depth interviews, this research provides insights into individuals who choose to participate in the design process. The findings that follow are from a representative study of individuals who recently were involved in designing their home kitchen. Results show that by engaging in design endeavors these informants received not only instrumental value (speed, efficiency) and economic value (money saved), but also socio-psychological value (signaling identity, desire for uniqueness) and transcendental value (joy, wonder, satisfaction). Framing these findings according to three foundational design actions – using, ideating, and making, the researcher developed a segmentation typology of the multi-faceted roles that people play in the act of designing. This study contributes to the existing literature by: (1) broadening the dyadic perspectives of provider and consumer roles in the realization of a design outcome; (2) revealing that when one engages in designing a desired outcome they create a deeper, more authentic, and abiding signaler of self than when we purchase what we seek; (3) extending design theory beyond the prevailing view that embeds the value of a design in outcome – the tool; and humans as homer faber, tool makers. Managerial and design practice implications offer specific suggestions for building and nurturing people in their design endeavors. / Dissertation/Thesis / Doctoral Dissertation Design 2015
|
Page generated in 0.0422 seconds