• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 611
  • 149
  • 111
  • 60
  • 44
  • 41
  • 20
  • 16
  • 9
  • 8
  • 5
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 1272
  • 389
  • 273
  • 168
  • 164
  • 158
  • 154
  • 149
  • 141
  • 139
  • 128
  • 127
  • 125
  • 92
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Evaluating a multi-hospital quality improvement strategy to implement clinical guidelines for radiographic contrast agents

Hernandez, John B. January 1998 (has links)
Thesis (Ph. D.)--RAND Graduate School, 1998. / "RGSD-146"--Cover p. 4. Includes bibliographical references (p. 105-111).
122

Evaluating a multi-hospital quality improvement strategy to implement clinical guidelines for radiographic contrast agents

Hernandez, John B. January 1998 (has links)
Thesis (Ph. D.)--RAND Graduate School, 1998. / "RGSD-146"--Cover p. 4. Includes bibliographical references (p. 105-111).
123

Clinical evaluation of the phase contrast microscope as a motivational aid in oral hygiene a thesis submitted in partial fulfillment ... periodontics ... /

Shulman, Jeremy. January 1973 (has links)
Thesis (M.S.)--University of Michigan, 1973.
124

Soluble contrast particles for cinefluorographic analysis of blood flow patterns

Mygind, Thorkild. January 1974 (has links)
Thesis--Copenhagen University. / Summary in Danish. Includes bibliographical references (p. 177-190) and index.
125

Contributions of response gain and contrast gain to human spatial pattern masking

Wagge, Jordan Rose. January 2009 (has links)
Title from first page of PDF document. Includes bibliographical references (p. 29-32).
126

Soluble contrast particles for cinefluorographic analysis of blood flow patterns

Mygind, Thorkild. January 1974 (has links)
Thesis--Copenhagen University. / Summary in Danish. Includes index. Bibliography: p. 177-190.
127

A new technique for microbubble characterisation and the implications to contrast enhanced ultrasound

Rademeyer, Paul January 2016 (has links)
The utility of microbubble agents in a variety of diagnostic and therapeutic ultrasound techniques has been widely demonstrated, most notably in Contrast Enhanced Ultrasound (CEUS) imaging. Unfortunately, the underlying mechanisms of their response to ultrasound excitation are poorly understood, restricting the development of promising techniques, such as quantitative perfusion imaging. A significant reason for this is that current microbubble characterisation techniques suffer from one or more of the following limitations: i) large experimental uncertainties, ii) physical restrictions on microbubble response and iii) failure to provide large data sets suitable for statistical analysis. This thesis presents a new technique to overcome these limitations. A co-axial microfluidic device is used to hydrodynamically confine microbubbles through the focal region of a laser and ultrasound field. The magnitude of light scattered by isolated microbubbles during ultrasound excitation is converted to radius using Mie Scattering theory. This technique is capable of obtaining large samples (>10<sup>3</sup>/min) of microbubbles to be efficiently characterised. The response of a commercial contrast agent, SonoVue®, is first investigated for a range of ultrasound exposure parameters; frequency (2 MHz - 4.5 MHz), peak negative pressure (6 kPa - 400 kPa) and pulse length (3 cycles - 8 cycles). Second the device is used to investigate the effect of composition and fabrication on microbubble response to similar ultrasound conditions. The results demonstrate a very large variability in microbubble response independent of initial size, indicating a significant lack of uniformity of coating properties. This is further supported by quantitative fluorescence imaging and quasi-static pressure chamber measurements. The implications of the findings for CEUS imaging and the development of microbubble contrast agents are discussed, as well as the limitations and suggested improvements of the characterisation technique.
128

Beurteilung des Kontrastsehens von Patienten mit idiopathischem Makulaforamen bzw. vitreomakulärer Traktion 6 Monate nach Injektion von Ocriplasmin / Investigation of the contrast vision of patients with idiopathic macula foramina or vitreomacular traction treated with Ocriplasmin up to six months after injection

Schrader, Nikolas 12 November 2020 (has links)
No description available.
129

Development of Ultrasound Pulse Sequences for Acoustic Droplet Vaporization / Utveckling av ultraljudspulssekvenser för akustisk vaporisering av vätskedroppar

Gouwy, Isabelle January 2019 (has links)
Ultrasound-mediated drug delivery has been proposed as a safe and non-invasive method to achieve localized drug release. Drug-loaded microbubbles are injected in the vascular system and ultrasound waves are then used to localize and burst the microbubbles at a specific targeted area. The relatively large size of microbubbles however limits both their lifetime and their reach in the human body. Phase-change liquid droplets can extend the use of ultrasound contrast agents for localized drug delivery. Their smaller size provides several advantages. The droplets can reach smaller capillaries, such as those in tumors vasculature. Their lifetime is also considerably prolonged. Through the phenomenon of Acoustic Droplet Vaporization (ADV), triggered by ultrasound stimulation, the liquid-filled droplets experience a phase change and are converted into gas-filled microbubbles. The newly created microbubbles can then be disrupted by further stimulation and release their drug load in the tumor tissue. In this project, a protocol to image and burst perfluoropentane-based micro-sized droplets using a single transducer is developed using the Verasonics Ultrasound System. The pulse sequences are developed to allow close monitoring of the drug delivery by capturing a series of images before and after the vaporization or destruction of the droplets. The droplets response was assessed for different pulse voltages and durations. Mean pixel value was calculated for the regions of interest, using the images captured before and after delivery of the ultrasound pulse. Vaporization of the droplets can be achieved with low voltage (10V), whereas high voltage (50V) triggers their destruction. Combined with high voltage, pulse duration affects the rate at which droplets can be destructed.
130

Quantitative Scanning Transmission Electron Microscopy of Thick Samples and of Gold and Silver Nanoparticles on Polymeric Surfaces

Dutta, Aniruddha 01 January 2014 (has links)
Transmission Electron Microscopy (TEM) is a reliable tool for chemical and structural studies of nanostructured systems. The shape, size and volumes of nanoparticles on surfaces play an important role in surface chemistry. As nanostructured surfaces become increasingly important for catalysis, protective coatings, optical properties, detection of specific molecules, and many other applications, different techniques of TEM can be used to characterize the properties of nanoparticles on surfaces to provide a path for predictability and control of these systems. This dissertation aims to provide fundamental understanding of the surface chemistry of Electroless Metallization onto Polymeric Surfaces (EMPS) through characterization with TEM. The research focuses on a single EMPS system: deposition of Ag onto the cross-linked epoxide "SU8", where Au nanoparticles act as nucleation sites for the growth of Ag nanoparticles on the polymer surface. TEM cross sections were analyzed to investigate the morphology of the Au nanoparticles and to determine the thicknesses of the Ag nanoparticles and of the Ag layers. A method for the direct measurement of the volume and thickness of nanomaterials has been developed in the project using High-Angle Annular Dark-Field (HAADF) Scanning Transmission Electron Microscopy (STEM). The morphology of Au and Ag NPs has been studied to provide reliable statistics for 3-D characterization. Deposition rates have been obtained as a function of metallization conditions by measuring the composition and thickness of the metal for EMPS. In the present work a calibration method was used to quantify the sensitivity of the HAADF detector. For thin samples a linear relationship of the HAADF signal with the thickness of a material is found. Cross-sections of multilayered samples provided by Triquint Semiconductors, FL, were analyzed as calibration standards with known composition in a TECNAI F30 transmission electron microscope to study the dependence of the HAADF detector signal on sample thickness and temperature. Dynamical diffraction processes play an important role in electron scattering for larger sample thicknesses. The HAADF detector intensity is not linearly dependent on sample thicknesses for thick samples. This phenomenon involves several excitation processes including Thermal Diffuse Scattering (TDS) which depends on temperature-dependent absorption coefficients. Multislice simulations have been carried out by Python programming using the scattering parameters (2) available in the literature. These simulations were compared with experimental results. Wedge-shaped Focused Ion Beam (FIB) samples were prepared for quantitative HAADF-STEM intensity measurements for several samples and compared with these simulations. The discrepancies between the simulated and experimental results were explained and new sets of absorptive parameters were calculated which correctly account for the HAADF-STEM contrasts. A database of several pure elements is compiled to illustrate the absorption coefficients and fractions of scattered electrons per nanometer of the sample. In addition, the wedge-shaped FIB samples were used for studying the HAADF-STEM contrasts at an interface of a high- and a low-density material. The use of thick samples reveals an increased signal at the interfaces of high- and low-density materials. This effect can be explained by the transfer of scattered electrons from the high density material across the interface into the less-absorbing low-density material. A ballistic scattering model is proposed here for the HAADF-STEM contrasts at interfaces of thick materials using Python. The simulated HAADF-STEM signal is compared with experimental data to showcase the above phenomenon. A detailed understanding of the atomic number contrast in thick samples is developed based on the combination of experimental quantitative HAADF-STEM and simulated scattering. This approach is used to describe the observed features for Ag deposition on SU8 polymers.

Page generated in 0.0435 seconds