1 |
Observational, numerical, and laboratory methods in high contrast imagingGerard, Benjamin Lionel 27 July 2016 (has links)
The search to directly image and characterize exoplanets that are initially hidden below the stellar and instrumental noise relies on the use of both extreme adaptive optics (AO) and a subsequent point spread function (PSF) subtraction pipeline. In this thesis I present my research on both real-time AO techniques and post-processing PSF subtraction techniques. First, I present a new PSF subtraction algorithm designed to image the HR 8799 debris disk using the Hubble Space Telescope. I find an over-luminosity after PSF subtraction that may be from the inner disk and/or planetesimal belt components of this system, but ultimately conclude that this is likely a non-detection as a result of telescope stability and broadband chromatic effects. Thus, assuming a non-detection, I derive upper limits on the HR 8799 dust belt mass in small grains, consistent with measurements of other debris disk halos. This important result suggests that a detection may not be possible until the rise of future, more stable space telescopes. Next, I present a new PSF subtraction algorithm applied to current campaign data from the Gemini Planet Imager (GPI), designed to optimize the GPI planet detection sensitivity of narrow orbit planets. My results, while still being investigated, seem to show that current algorithms are already optimized, and that limited gains can be achieved with my new algorithm. Finally, I apply a new real-time AO nulling technique, called super-Nyquist wavefront control (SNWFC), to be used on future 30 m class telescopes to image wide-orbit exoplanets. I demonstrate application of SNWFC in both a deterministic laboratory experiment and coronagraphic simulations using an interferometric nulling technique, suggesting that this technique would allow higher SNR characterization of wide-orbit exoplanets on future telescopes. / Graduate / 0606, 0752
|
2 |
The path to visible extreme adaptive optics with MagAO-2K and MagAO-XMales, Jared R., Close, Laird M., Guyon, Olivier, Morzinski, Katie M., Hinz, Philip, Esposito, Simone, Pinna, Enrico, Xompero, Marco, Briguglio, Runa, Riccardi, Armando, Puglisi, Alfio, Mazin, Ben, Ireland, Michael J., Weinberger, Alycia, Conrad, Al, Kenworthy, Matthew, Snik, Frans, Otten, Gilles, Jovanovic, Nemanja, Lozi, Julien 27 July 2016 (has links)
The next generation of extremely large telescopes (ELTs) have the potential to image habitable rocky planets, if suitably optimized. This will require the development of fast high order "extreme" adaptive optics systems for the ELTs. Located near the excellent site of the future GMT, the Magellan AO system (MagAO) is an ideal on-sky testbed for high contrast imaging development. Here we discuss planned upgrades to MagAO. These include improvements in WFS sampling (enabling correction of more modes) and an increase in speed to 2000 Hz, as well as an H2RG detector upgrade for the Clio infrared camera. This NSF funded project, MagAO-2K, is planned to be on-sky in November 2016 and will significantly improve the performance of MagAO at short wavelengths. Finally, we describe MagAO-X, a visible-wavelength extreme-AO "afterburner" system under development. MagAO-X will deliver Strehl ratios of over 80% in the optical and is optimized for visible light coronagraphy.
|
3 |
In-situ Scanning Electron Microscopy for Electron-beam Lithography and In-situ One Dimensional Nano Materials CharacterizationLong, Renhai 15 May 2009 (has links)
In this thesis, we demonstrate in-situ scanning electron microscopy techniques for both electron beam lithography (EBL) and in-situ one dimensional nano materials electrical characterization. A precise voltage contrast image positioning for in-situ EBL to integrate nanowires into suspended structures for nanoswitch fabrication has been developed. The in-situ EBL eliminates the stage movement error and field stitching error by preventing any movements of the stage during the nanolithography process; hence, a high precision laser stage and alignment marks on the substrate are not needed, which simplifies the traditional EBL process. The ZnO piezoelectronics is also studied using nano-manipulators in scanning electron microscope. Methods to improve the contact have been demonstrated and the contacts between probe tips and the nanowires are found to have significant impact on the measurement results.
|
4 |
Three years of harvest with the vector vortex coronagraph in the thermal infraredAbsil, Olivier, Mawet, Dimitri, Karlsson, Mikael, Carlomagno, Brunella, Christiaens, Valentin, Defrère, Denis, Delacroix, Christian, Femenía Castella, Bruno, Forsberg, Pontus, Girard, Julien, Gómez González, Carlos A., Habraken, Serge, Hinz, Philip M., Huby, Elsa, Jolivet, Aïssa, Matthews, Keith, Milli, Julien, Orban de Xivry, Gilles, Pantin, Eric, Piron, Pierre, Reggiani, Maddalena, Ruane, Garreth J., Serabyn, Gene, Surdej, Jean, Tristram, Konrad R. W., Vargas Catalán, Ernesto, Wertz, Olivier, Wizinowich, Peter 09 August 2016 (has links)
For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 pm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
|
5 |
Femtosecond laser based x-ray sources and their applications in phase contrast imagingAli, Atif 06 1900 (has links)
The focus of this dissertation is to study the keV X-ray emission from different Z material to develop compact, quasi-continuous tabletop K sources for the application of in-line phase contrast imaging, X-ray diffraction experiments and X-ray microscopy. The emission occurs from plasma produced by focusing 120 fs, 800 nm and 300 J Ti:Sapphire laser pulses up to an intensity of few times 1016 W/cm2 on Cu, Fe and Ag metal targets. The main interest of these experiments is to characterize the fast electrons and X-ray emission from the laser plasma interaction. The investigation of X-ray emission energy and spectral characteristics is carried out by employing three detector systems which include filtered pin-diode, Charge Coupled Device and CdTe pulse height detectors. Scaling of photon flux as a function of incident laser energy is measured and related to the dynamics and absorption mechanisms involved in laser matter interaction.
Specifically the construction and evaluation of K X-ray sources operated at 1 kHz repetition rate is reported with a photon flux of ~ 7109 photon/s, 3109 photon/s and 1.4107 photon/s around the K line for Cu, Fe and Ag respectively. These K fluences correspond to energy conversion efficiencies of around Cu = 310-5, Fe = 1.0610-5 and Ag = 210-7. The Cu and Fe K X-ray sources are applied to thin biological specimens and low atomic number (Z) materials to record in-line phase contrast images. It is demonstrated that the laser based K
sources can serve as alternative sources for conventional X-ray radiography of biological samples in clinical applications. / Photonics and Plasmas
|
6 |
High-Contrast Near-Infrared Studies of Planetary Systems and their Circumstellar EnvironmentsRodigas, Timothy John January 2013 (has links)
Planets are thought to form in circumstellar disks, leaving behind planetesimals that collide to produce dusty debris disks. Characterizing the architectures of planetary systems, along with the structures and compositions of debris disks, can therefore help answer questions about how planets form. In this thesis, I present the results of five papers (three published, two in preparation) concerning the properties of extrasolar planetary systems and their circumstellar environments. Chapters 2 and 3 are studies of radial velocity (RV) exoplanetary systems. For years astronomers have been puzzled about the large number of RV-detected planets that have eccentric orbits (e>0.1). In Chapter 2 I show that this problem can partially be explained by showing that two circular-orbit planets can masquerade as a single planet on an eccentric orbit. I use this finding to predict that planets with mildly eccentric orbits are the most likely to have massive companions on wide orbits, potentially detectable by future direct imaging observations. Chapter 3 presents such a direct imaging study of the 14 Her planetary system. I significantly constrain the phase space of the putative candidate 14 Her c and demonstrate the power of direct imaging/RV overlap. Chapters 4 and 5 are high-contrast 2-4 μm imaging studies of the edge-on debris disks around HD 15115 and HD 32297. HD 15115's color is found to be gray, implying large grains 1-10 μm in size reside in stable orbits in the disk. HD 32297's disk color is red from 1-4 μm. Cometary material (carbon, silicates, and porous water ice) are a good match at 1-2 μm but not at L'. Tholins, organic material that is found in outer solar system bodies, or small silicates can explain the disk's red color but not the short wavelength data. Chapter 6 presents a dynamical study of dust grains in the presence of massive planets. I show that the width of a debris disk increases proportionally with the mass of its shepherding planet. I then make predictions for the masses and orbits of putative planets in five well-known disks. In Chapter 7, I summarize and discuss plans for future research in the exoplanet field.
|
7 |
Femtosecond laser based x-ray sources and their applications in phase contrast imagingAli, Atif Unknown Date
No description available.
|
8 |
Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar ObjectsJanuary 2017 (has links)
abstract: The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity.
For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. By analyzing archival HST data and examining the near-infrared colors of HD 106906b, we conclude that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, I measure the properties of the low mass directly imaged planet 51 Eridani b. We combined published J, H spectra with updated LP photometry, new K1, K2 spectra, and MS photometry. The new data confirms that the planet has redder than similar spectral type objects, which might be due to the planet still transitioning from to L-to-T. Model atmospheres indicate a cooler effective temperature best fit by a patchy cloud atmosphere making 51 Eri b an excellent candidate for future variability studies with the James Webb Space Telescope. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2017
|
9 |
Markov Chain Monte Carlo Modeling of High-Redshift Quasar Host Galaxies in Hubble Space Telescope ImagingJanuary 2014 (has links)
abstract: Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can outshine the combined light of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to near-infrared wavelengths are fundamentally limited by the precision with which the light from the central quasar accretion can be disentangled from the light of stars in the surrounding host galaxy. In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts z ≃ 2 and z ≃ 6 using new data obtained with the Hubble Space Telescope. I describe a new method for removing the point source flux using Markov Chain Monte Carlo parameter estimation and simultaneous modeling of the point source and host galaxy. I then discuss applications of this method to understanding the physical properties of high-redshift quasar host galaxies including their structures, luminosities, sizes, and colors, and inferred stellar population properties such as age, mass, and dust content. / Dissertation/Thesis / Ph.D. Astrophysics 2014
|
10 |
Spatial linear dark field control: stabilizing deep contrast for exoplanet imaging using bright specklesMiller, Kelsey, Guyon, Olivier, Males, Jared 30 October 2017 (has links)
Direct imaging of exoplanets requires establishing and maintaining a high-contrast dark field (DF) within the science image to a high degree of precision (10(-10)). Current approaches aimed at establishing the DF, such as electric field conjugation (EFC), have been demonstrated in the lab and have proven capable of high-contrast DF generation. The same approaches have been considered for the maintenance of the DF as well. However, these methods rely on phase diversity measurements, which require field modulation; this interrupts the DF and consequently competes with the science acquisition. We introduce and demonstrate spatial linear dark field control (LDFC) as an alternative technique by which the high-contrast DF can be maintained without modulation. Once the DF has been established by conventional EFC, spatial LDFC locks the high-contrast state of the DF by operating a closed loop around the linear response of the bright field (BF) to wavefront variations that modify both the BF and the DF. We describe the fundamental operating principles of spatial LDFC and provide numerical simulations of its operation as a DF stabilization technique that is capable of wavefront correction within the DF without interrupting science acquisition. (c) The Authors.
|
Page generated in 0.1052 seconds