• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 931
  • 574
  • 148
  • 126
  • 119
  • 59
  • 31
  • 28
  • 13
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • Tagged with
  • 2418
  • 480
  • 452
  • 395
  • 251
  • 203
  • 190
  • 169
  • 164
  • 162
  • 155
  • 151
  • 123
  • 122
  • 116
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Predicting Transpiration rates of Hydroponically-Grown Plant Communities in Controlled Environments

Monje, Oscar 01 May 1998 (has links)
Canopy transpiration is a major factor determining crop evapotranspiration and energy budgets. Unfortunately the development of robust models of canopy transpiration is hindered by a lack of reliable data due to the difficulties of making canopy-scale measurements. However, measurements of canopy water vapor and carbon fluxes via gas exchange techniques are possible in controlled environments. Simultaneous measurements of transpiration, photosynthesis, and canopy temperature were made in wheat and soybean communities. These data were used to calculate chamber aerodynamic and canopy stomata! conductances, and to model the response of canopy transpiration to CO2concentration and vapor pressure deficit. Canopy stomata! conductance was found to decrease diurnally by 20-30% in well-watered crops grown under constant environmental conditions. The magnitude of this diurnal decrease in the canopy stomata! conductance of wheat and soybean decreased with increasing ambient CO2 concentrations. Eight models describing how canopy stomatal conductance responds to environmental changes were incorporated into a canopy transpiration model. The results and methods developed in this study will allow future physiologically-based canopy transpiration models to incorporate these models for predicting the response of transpiration rates in controlled environments.
332

Controlled release of macromolecules from ethylene-vinyl acetate copolymer matrices : microstructure and kinetic analyses

Bawa, Rajan Sohansingh January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Nutrition and Food Science; and, (M.S.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE / Includes bibliographical references. / by Rajan Sohansingh Bawa. / M.S.
333

Automated derivatization and identification of controlled substances via total vaporization solid phase microextraction (Tv-Spme) and gas chromatography-mass spectrometry (Gc-Ms)

Hickey, Logan D. January 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Gas chromatography-mass spectrometry (GC-MS) is one of the most widely used instrumental techniques for chemical analyses in forensic science laboratories around the world due to its versatility and robustness. The most common type of chemical evidence submitted to forensic science laboratories is seized drug evidence, the analysis of which is largely dominated by GC-MS. Despite this, some drugs are difficult or impossible to analyze by GC-MS under normal circumstances. For these drugs, derivatization can be employed to make them more suitable for GC-MS. In Chapter 1, the derivatization of primary amino and zwitterionic drugs with three different derivatization agents, trifluoroacetic anhydride (TFAA); N,O-bis(trimethylsilyl)trifluoroacetamide + 1% trimethylchlorosilane (BSTFA + 1% TMCS); and dimethylformamide dimethylacetal (DMF-DMA), is discussed. The chromatographic performance was quantified for comparison between the derivatives and their parent drugs. Peak symmetry was compared using the asymmetry factor (As), separation efficiency was measured by the number of theoretical plates (N), and sensitivity was compared by measuring the peak areas. In Chapter 2, derivatization techniques were adapted for an automated on-fiber derivatization procedure using a technique called total vaporization solid phase microextraction (TV-SPME). TV-SPME is a variation of SPME in which a small volume of sample solution is used which can be totally vaporized, removing the need to consider the equilibrium between analytes in the solution and analytes in the headspace. By allowing derivatization agent to adsorb to the SPME fiber prior to introduction to the sample vial, the entire derivatization process can take place on the fiber or in the headspace surrounding it. The use of a robotic sampler made the derivatization procedure completely automated. In Chapter 3, this on-fiber derivatization technique was tested on standards of 14 controlled substances as well as on realistic samples including simulated “street meth”, gamma-hydroxybutyric acid (GHB) in mixed drinks, and hallucinogenic mushrooms, and was also tested on several controlled substances as solid powders. Future work in this area is discussed in Chapter 4, including adapting the method to toxicological analyses both in biological fluids and in hair. Some of the expected difficulties in doing so are discussed, including the endogenous nature of GHB in the human body. The presence of natural GHB in beverages is also discussed, which highlights the need for a quantitative addition to the method. Additional method improvements are also discussed, including proposed solutions for complete derivatization of more of the analytes, and for decreasing analysis time.
334

Linkage of transportation demand model and production cost model to investigate flexibility benefits of electric vehicles for the electricity grid

Xu, Robert 04 January 2022 (has links)
Uptake of electric vehicles (EVs) is accelerating as governments around the world aim to decarbonize transportation. While EV adoption is widely promoted in Canada, swift and widespread EV adoption will require some degree of controlled charging to mitigate the challenges that EV charging imposes onto the power system, such as increased cost and emissions from electricity generation. In this analysis, the potential benefits of utility controlled charging (UCC) are evaluated for the city of Regina, Saskatchewan, which aims to be 100% renewable by 2050. The flexibility that UCC can contribute, and its effectiveness for integrating variable renewables is tested in configurations with solar resources, wind resources, and a mix of both. A novel modelling methodology is developed to do so, which links a travel demand model (TASHA) and an electricity system production cost model (SILVER), using a novel intermediate charging model to simulate electric vehicle travel behaviour and utility controlled charging. The use of operational models allows for an accurate representation of both travel demand and electricity system operating costs and emissions at a high spatial and temporal resolution. By linking sectoral models in this way, the interactions between the two sectors - transportation and power – can be investigated simultaneously with detailed insight into the two individual sectors. Results show that uncontrolled charging will increase average emissions from the electricity grid, but controlled charging decreases both greenhouse gas emissions as well as operating costs. By shifting vehicle charging to times when renewable energy production is high, UCC reduces operating costs and emissions by 7% compared to uncontrolled charging, without requiring changes to travel scheduling and behaviour. The temporal characteristics of wind generation is found to be more compatible with controlled charging than solar PV, due to its longer generation periods and higher capacity factor in the winter, when demand is also high. / Graduate / 2022-11-19
335

QUALITY BY DESIGN APPROACH TO DEVELOP 3D INTEGRATED PHARMACEUTICALS FOR PERSONALIZED MEDICINE

Mario Alberto Cano-Vega (8084972) 31 January 2022 (has links)
<div>The advent of Patient-Centric therapy demands technologies capable of producing multiple versions of a given product, each tailored for specific segments of the population/individual, but in a time- and cost-effective manner. Prevailing manufacturing methods for oral dosage forms do not easily lend themselves for the transition to the Patient-Centric area. The purpose of this research was to develop a formulation/manufacturing platform technology meeting the flexibility requirements for Patient-Centric formulation and product development for oral dosage forms. The approach is based on the molecular designing and manufacturing of the dosage form. The dosage form consists of a 3D assembly of prefabricated functional modules, each with a specific pharmaceutical performance function. </div><div>The characterization of individual modules showed that solvent casting produced API-loaded HPMC films with homogeneous content distribution. The release profile of 3D assemblies was significantly influenced by the physicochemical properties of single modules. API-loading, thickness, and diameter had a significant effect on the release kinetics. In contrast, the hydrophobicity of the casting substrate did not affect the release kinetics. The initial geometry of the final 3D assembly given by the number of modules and their diameter was proved to have a significant impact on the release kinetics as well. </div><div>The 3D assemblies were used to produce dosage forms with customizable release profiles. Two API-loaded thin HPMC-based films with fast (FRA) and slow (SRB) release rates were produced by the solvent casting method. Accurate dose control (API loading) was accomplished by varying the number of individual modules in the 3D assemblies, whereas control of release kinetics was achieved by combining different ratios FRA and SRB film modules in the assembled dosage form. </div><div>The modular design was also tested for its ability to generate a dosage form of a weak-base API. This part was accomplished using a module containing citric acid (CA) interspaced between weak-base loaded FRA modules. Characterization of the 3D assemblies that were devoid of CA modules showed that the API release rate from modular assemblies containing weekly basic API exhibited strong pH-dependence. The 3D assemblies featuring CA modules in their design exhibited nearly pH-independent release kinetics. </div><div>Electrospinning was used as an enabling technology to produce HPMC-based fibrous films. HPMC films were able to encapsulate a wide variety of APIs with different aqueous solubility. All fibers produced were in the range of a few hundred nanometers to a few microns. X-ray diffraction and differential scanning calorimetry exhibited the amorphous or crystalline state of the API dispersed. Disintegration and release tests showed the fast dissolution of the fibrous system. </div><div><br></div>
336

The Effects of Coaching on Salivary Cortisol Stress Marker in Mothers with Young Children, A Randomized Controlled Trial / 乳幼児を養育する母親に対するコーチングがストレスマーカー、唾液コルチゾールに及ぼす効果:無作為化比較試験

Ohashi, Junko 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第18908号 / 人健博第22号 / 新制||人健||2(附属図書館) / 31859 / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 菅沼 信彦, 教授 鈴木 眞知子, 教授 中原 俊隆 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
337

Release of Low Acyl Gellan Gum in a Controlled Release System

Baawad, Abdullah January 2018 (has links)
No description available.
338

Sediment routing in bedrock-controlled channels

Odiyo, John Ogony 01 March 2007 (has links)
Student Number : 9700136A - PhD thesis - School of Civil and Environmental Engineering - Faculty of Engineering and the Built Environment / A sediment budget model in which each steady discharge scours sediment along a trajectory towards ultimate target storage or deposits sediment towards the same ultimate target storage has been conceptualized and developed. The method is aimed at routing sediment in morphologically diverse bedrock-controlled channels in which sediment transport and storage is not a continuous process in space and time and mostly occurs in response to discrete discharges. The relative value of the ultimate stable scour depth (Huss) for each steady discharge with respect to the current scour depth after adding sediment supply determines the potential to scour or store sediment. Scour depths measured at discrete locations along the longitudinal profile of a laboratory pool at discrete times until changes in scour were not discernible for each steady discharge and sediment size have been integrated to provide the Huss and storage depletion curve. The experimentally established dependence of scour depth on critical flow depth, settling velocity and sediment supply formed the basis of generating dimensionless Huss and storage depletion curve from these parameters using the Buckingham π theorem. The optimization of experimental results to generate the storage depletion curve gave the exponent of time (φ) and the exponential decay factor (k) as 0.5 and 0.0040207 respectively. Regression fit of dimensionless Huss and critical flow intensity gave a linear relationship with a gradient of 0.90214, y-intercept of –1.4766 and R2 of 96%. The suitability of the model for budgeting sediment dynamics in a series of connected storage units, the validity of using the relative values of Huss and the current scour depth after adding sediment supply to determine scour potential and the existence of active storage associated with sediment supply for each steady discharge have been confirmed experimentally. Modelling with equivalent steady discharges computed from unit stream power principles on the rising and the falling limbs of the hydrograph resulted in scour on the rising limb of magnitude dependent on the magnitude and sequence of the flood event, and less or no scour on recession. The modelling concepts and approach have thus been validated and the potential to reasonably simulate sediment storage changes in bedrock-controlled rivers demonstrated.
339

Design and Prototype Validation of a Laterally Mounted Powered Hip Joint for Hip Disarticulation Prostheses

Mroz, Sarah 26 May 2023 (has links)
Powered prostheses are at the forefront of prosthetic technology, improving functionality by providing positive power to joints in the absence of native anatomy. Currently, there is no commercially available powered solution for hip-level amputees, and most hip prostheses are mounted to the front of the prosthetic socket. This thesis designed, fabricated, and tested a novel Laterally Mounted Powered Hip Joint (LMPHJ) that augments user gait to promote improved walking patterns. The LMPHJ attaches to the lateral side of the prosthetic socket, locating the hip centre of rotation closer to the anatomical location while ensuring user safety and stability. The new design locates the motor and all electronics in the thigh area, thereby maintaining a low profile while transmitting the required hip moments to the joint centre of rotation. A prototype was designed and manufactured to evaluate LMPHJ performance. Mechanical testing followed the ISO 15032:2000 standard and successfully demonstrated the joint's resistance to everyday loading conditions. Functional testing involved integrating the LMPHJ, Ossur Rheo Knee, and Ossur Pro-Flex XC with a prosthesis simulator that allowed three able-bodied participants to walk with the powered prosthesis successfully. This validated the mechanical design for walking over level ground and demonstrated that the LMPHJ is ready for next phase evaluation with hip disarticulation amputee participants.
340

Varietal Loblolly (Pinus Taeda L.) Response to Various Management Schemes and Comparison among Genetic Improvement Levels

Herrin, Billy Landis 11 August 2012 (has links)
Increased growth rates, wood quality, and disease resistance have been accomplished within loblolly pine (Pinus taeda L.) through genetic selection and improved management practices. Genetic engineering of trees has the potential to further improve these selections but also needs to be tested. Two studies were conducted. Study one compares three levels of genetic improvement: Mass-Control Pollinated (MCP), Second Generation Op (2nd gen), and Varietal Material. After three years the MCP material had larger mean heights, mean diameters, and mean volume than the other two genetic entities. However the top five performing varietals were about 0.5 feet taller than the MCP material. Study two tested two contrasting loblolly pine ideotypes across different spacings and management intensities. After two years the crop tree ideotype and the intensive management plots had larger mean heights, mean ground-line diameters, mean volumes, and mean crown widths. Mean branch angle differed significantly between the two crown ideotypes.

Page generated in 0.0663 seconds