571 |
Menové vojny / Menové vojnyGažo, Ivan January 2014 (has links)
The importance of a currency war and its consequences is nowadays a hot topic of all economies around the world. My master thesis is designed to explain this concept, to introduce the main actors of the currency wars, the ways, in which national economies were and are trying to boost and improve their economic situation and highlight the main tools that are usually used by major powers within currency wars. The practical part is divided into three main sub-chapters that analyze the causes and consequences of currency wars, which we have previously witnessed. Analysis of the currency war I. relates to the years 1921-1936, the currency war II. relates to the period around World War II. and the formation of Bretton Woods system, and finally currency war III. relates to last years, when a superpowers like US, China and EU entered the war as a result of economic recessions of 2007.
|
572 |
Islandská ekonomika po krizi a perspektivy jejího budoucího vývoje / Icelandic economy after the crisis and future perspectives on economic developmentPlocková, Kateřina January 2015 (has links)
Diploma thesis deals with the recovery of the Icelandic economy after the financial crisis that affected the country in 2008. The thesis is divided into four main chapters. The first chapter focuses on theoretical view on the financial crisis and the typology of each crisis. The second chapter describes pre-crisis economic development, triggers and the subsequent collapse of the banking sector. The third chapter deals with the impacts of the crisis on selected economic indicators, evaluation of the assistance provided by International Monetary Fund and outlines the issue of capital controls that were relatively controversial element of the IMF program. The last chapter discusses the question of joining the European Union in relation to the crisis and also describes the major difficult point of negotiation, namely fishing.
|
573 |
Geomorphological controls on pool formation and pool persistence in non-perennial river systemsHattingh, Keaton Jade January 2020 (has links)
>Magister Scientiae - MSc / Globally climate variability and anthropogenic effects are causing more perennial rivers to become non-perennial rivers. Non-perennial rivers are distinguished by their isolated pools which serve as refugia for aquatic organisms, water birds, and riparian vegetation. The literature on non-perennial rivers demonstrates that pools are poorly understood in terms of their location, nature, and geomorphic persistence. Therefore, this study examines the relationships between the spatial distribution, morphology, and substrate characteristics of pools in reaches of the Prins and Touws rivers in the Klein Karoo. A greater understanding of pools will facilitate better management, monitoring, and restoration strategies for pool ecology since the geomorphology of pools provides a key part of the ecological template.
Worldview-2 satellite imagery (2017) and orthorectified aerial photography (2014, 2013, and 1944) were used to assess the effects of major flooding events on pools over time. A DGPS (Differential Global Positioning System) was used to survey the pool widths, lengths, depths, and valley widths, cross-sections, and longitudinal profiles of the river. Sediment samples and Wolman pebble counts were used to assess the grain size and organic matter content of each pool in the study area. Detailed descriptions of the characteristics of each pool in terms of position in the channel, valley form, and obstruction presence and type were also assessed.
Results indicate that most of the large pools occur at bedrock outcrops of the valley margins, and smaller pools are associated with Vachellia karroo debris bar features. Larger and highly persistent pools are associated with valley confinement and smaller less persistent, scour pools occur mid-channel where the valley expands. Analysis of the results shows that the valley width is the dominant control on these forced pools. The type of obstruction also plays a role in the formation of the pool as large woody debris results in smaller pools whereas, bedrock outcrops result in larger sized pools. A significant relationship was found between the grain size and organic matter content of pools.
Aerial photography of the spatial distribution of the pools revealed that before a major flood, the pools were small and patchy, whereas afterward, they were larger and more elongated. It is suggested that at the bedrock outcrops, major scouring and eddy processes drive the formation of larger pools during large flood events, whereas pool dissection by sediment deposits prevails during intervening intermediate to low flow periods. The results are discussed in terms of the geomorphic controls (valley width, pool dimensions, morphology, substrate, and obstruction characteristics) on the formation and maintenance of pools in dryland settings. A conceptual
model is proposed to explain the geomorphic changes of the pools in the four geomorphological zones of non-perennial rivers.
|
574 |
UBOT-7: THE DESIGN OF A COMPLIANT DEXTEROUS MOBILE MANIPULATORCummings, Jonathan 07 November 2014 (has links)
This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and active compliance. This is accomplished through incorporating series elastic actuators in its arms and torso joints, improving the mechanical design to reduce backlash, and incorporating impedance controllers in the robot. The focus of this thesis is the development of the mechanical, sensor, and controller design for the uBot-7 platform. An impedance controller is developed and evaluated on a bench top prototype series elastic actuator.
|
575 |
A NUMERICAL FLUTTER PREDICTOR FOR 3D AIRFOILS USING THE ONERA DYNAMIC STALL MODELBoersma, Pieter 25 October 2018 (has links)
To be able to harness more power from the wind, wind turbine blades are getting longer. As they get longer, they get more flexible. This creates issues that have until recently not been of concern. Long flexible wind turbine blades can lose their stability to flow induced instabilities such as coupled-mode flutter. This type of flutter occurs when increasing wind speed causes a coupling of a bending and a torsional mode, which create limit cycle oscillations that can lead to blade failure. To be able to make the design of larger blades possible, it is important to be able to predict the critical flutter and post critical flutter behaviors of wind turbine blades.
Most numerical research concerning coupled-mode wind turbine is focused on predicting the critical flutter point, and less focused on the post critical behavior. This is because of the mathematical complexities associated with the coupled, nonlinear wind turbine blade systems. Here, a numerical model is presented that predicts the critical flutter velocity and post critical flutter behavior for 3D airfoils with third order structural nonlinearities. The numerical model can account for the attached flow and separated flow region by using the ONERA dynamic stall model. By retaining higher-order structural nonlinearities, lateral and torsional displacements can be predicted, which makes it possible to use this model in the future to control wind turbine blade flutter. Furthermore, by using a dynamic stall model to simulate the flow, the solver is able to predict accurate limit cycle oscillations when the effective angle of attack is larger than the stall angle.
The coupled, nonlinear equations of motion are two coupled nonlinear PDEs and are determined using Hamilton’s principle. In order to solve the equations of motion, they are discretized using the Galerkin technique into a set of ODEs. The motion of the airfoil is used as an input to ONERA. The airfoil is sectioned with the lateral position and angle of attack known as well as the velocity and acceleration of the section at an instance of time. This information is used by ONERA to calculate lift and moment coefficients for each section which are then used to calculate the total lift and moment forces of the airfoil. Then, a Fortran code solves the system by using Houbolt’s finite difference method.
A theoretical NACA 0012 airfoil has been designed to define the parameters used by the equations of motion. Third bending and first torsional coupling occurs after the critical flutter point and dynamic lift and moment coefficients were observed. Dynamic stall was also observed at wind velocities farther away from the bifurcation point. Bifurcation diagrams, time histories, and phase planes have been created that represent the flutter behavior.
|
576 |
Calculation of Scalar Isosurface Area and ApplicationsShete, Kedar Prashant 29 October 2019 (has links)
The problem of calculating iso-surface statistics in turbulent flows is interesting for a number of reasons, some of them being combustion modeling, entrainment through turbulent/non-turbulent interfaces, calculating mass flux through iso-scalar surfaces and mapping of scalar fields. A fundamental effect of fuid turbulence is to wrinkle scalar iso-surfaces. A review of the literature shows that iso-surface calculations have primarily been done with geometric methods, which have challenges when used to calculate surfaces that have high complexity, such as in turbulent flows. In this thesis, we propose an alternative integral method and test it against analytical solutions. We present a parallelized algorithm and code to enable in-simulation calculation of isosurface area. We then use this code to calculate area statistics for data obtained from Direct Numerical Simulations and make predictions about the variation of the iso-scalar surface area with Taylor Peclet numbers between 9.8 and 4429 and Taylor Reynolds numbers between 98 and 633.
|
577 |
CORGI: Compute Oriented Recumbent Generation InfrastructureHunt, Christopher Allen 01 March 2017 (has links)
Creating a bicycle with a rideable geometry is more complicated than it may appear, with today’s mainstay designs having evolved through years of iteration. This slow evolution coupled with the bicycle’s intricate mechanical system has lead most builders to base their new geometries off of previous work rather than expand into new design spaces. This crutch can lead to slow bicycle iteration rates, often causing bicycles to all look about the same. To combat this, several bicycle design models have been created over the years, with each attempting to define a bicycle’s handling characteristics given its physical geometry. However, these models often analyze a single bicycle at a time, and as such, using them in an iterative design process can be cumbersome. This work seeks to improve an existing model used by the Cal Poly Mechanical Engineering department such that it can be used in a proactive, iterative fashion (as opposed to the reactive, single-design paradigm that it currently supports). This is accomplished by expanding the model’s inputs to include more bicycle components as well as differently sized riders. This augmented model is then incorporated into several search platforms ranging from a brute-force implementation to several variants using genetic algorithm concepts. These models allow the designer to specify a bicycle design search space as well as a set of riders upfront, from which the algorithms search out and find strong candidate designs to return to the user. This in turn reduces the overhead on the designer while also potentially discovering new bicycle designs which had not been considered previously viable. Finally, a front-end was created to make it easier for the user to access these algorithms and their results.
|
578 |
Towards Autonomous Localization of an Underwater DroneSfard, Nathan 01 June 2018 (has links)
Autonomous vehicle navigation is a complex and challenging task. Land and aerial vehicles often use highly accurate GPS sensors to localize themselves in their environments. These sensors are ineffective in underwater environments due to signal attenuation. Autonomous underwater vehicles utilize one or more of the following approaches for successful localization and navigation: inertial/dead-reckoning, acoustic signals, and geophysical data. This thesis examines autonomous localization in a simulated environment for an OpenROV Underwater Drone using a Kalman Filter. This filter performs state estimation for a dead reckoning system exhibiting an additive error in location measurements. We evaluate the accuracy of this Kalman Filter by analyzing the effect each parameter has on accuracy, then choosing the best combination of parameter values to assess the overall accuracy of the Kalman Filter. We find that the two parameters with the greatest effects on the system are the constant acceleration and the measurement uncertainty of the system. We find the filter employing the best combination of parameters can greatly reduce measurement error and improve accuracy under typical operating conditions.
|
579 |
Návrh navedení, navigace a řízení pro vertikální přistání opakovaně použitelného raketového urychlovače / Design of Guidance, Navigation and Control for Vertical Landing of a Reusable Rocket BoosterKirály, Adrián January 2021 (has links)
Táto diplomová práca sa zaoberá vývojom systému pre navádzanie, navigáciu, a riadenie pre znovupoužiteľný raketový urýchľovač. Pre dosiahnutie tohto cieľu bol vytvorený simulačný model rakety v prostredí Simulink. Na základe dát získaných pomocou CFD softvéru bol pre túto simuláciu vytvorený tiež vlastný aerodynamický model. Pre účely demonštrácie dosiahnutých výsledkov bol ako súčasť práce tiež naprogramovaný interaktívny 3D vizualizačný nástroj.
|
580 |
Out-of-Loop Compensation Method for Op-Amps Driving Heavy Capacitive LoadsGandhi, Shubham 01 March 2016 (has links)
It is well known that real op-amps do not share most of the desirable characteristics of an ideal one, particularly those of gain and output impedance. When presented with a capacitive load, such as a MOSFET or ADC, feedback in an op-amp circuit can quickly become unstable. This thesis studies and characterizes an op-amp’s output impedance and how its interaction with this type of load creates a parasitic pole which leads to instability. Applying ideas from feedback control theory, a model for studying the problem is developed from which a generalized method for compensating the undesirable circumstance is formulated.
Even in a zero-input state, many real op-amps driving capacitive loads can experience unforced oscillations. A case study is performed with three commonly used devices. First, the output impedance is determined by its dependence on the unity-gain bandwidth, load capacitance, and oscillation frequency. It is fitted into a second-order feedback control model that allows for an analytical study of the problem. It is then shown that a carefully designed passive network can be introduced between the load and op-amp to obtain a properly damped system free of oscillation and well-behaved.
Using a shunt resistor is a known and commonly used method for lowering an op-amp’s output impedance to gain stability. This work considers the converse addition of a series capacitor to instead lower the load capacitance seen by the op-amp, a seemingly complementary method that achieves the same goal. A generalized, composite compensation method is developed that uses both the shunt resistor and series capacitor– a strategy not yet found in literature. Relevant formulas for damping ratio and natural frequency are derived that allow the design of a passive compensation network. Furthermore, tradeoffs between compensation, voltage swing, current consumption, and power usage are considered.
An emphasis is placed on comparing simulated versus real circuits to highlight the fact that any problem is much worse in real-life than in a simulation. SPICE models and programs aim to de-idealize certain device characteristics, but often cannot account for environmental conditions and manufacturing variance. Thus, an importance is placed on experimental verification guided by simulations.
|
Page generated in 0.0867 seconds