1 |
Security Analysis on Network Systems Based on Some Stochastic ModelsLi, Xiaohu 01 December 2014 (has links)
Due to great effort from mathematicians, physicists and computer scientists, network science has attained rapid development during the past decades. However, because of the complexity, most researches in this area are conducted only based upon experiments and simulations, it is critical to do research based on theoretical results so as to gain more insight on how the structure of a network affects the security. This dissertation introduces some stochastic and statistical models on certain networks and uses a k-out-of-n tolerant structure to characterize both logically and physically the behavior of nodes. Based upon these models, we draw several illuminating results in the following two aspects, which are consistent with what computer scientists have observed in either practical situations or experimental studies.
Suppose that the node in a P2P network loses the designed function or service when some of its neighbors are disconnected. By studying the isolation probability and the durable time of a single user, we prove that the network with the user's lifetime having more NWUE-ness is more resilient in the sense of having a smaller probability to be isolated by neighbors and longer time to be online without being interrupted. Meanwhile, some preservation properties are also studied for the durable time of a network. Additionally, in order to apply the model in practice, both graphical and nonparametric statistical methods are developed and are employed to a real data set.
On the other hand, a stochastic model is introduced to investigate the security of network systems based on their vulnerability graph abstractions. A node loses its designed function when certain number of its neighbors are compromised in the sense of being taken over by the malicious codes or the hacker. The attack compromises some nodes, and the victimized nodes become accomplices. We derived an equation to solve the probability for a node to be compromised in a network. Since this equation has no explicit solution, we also established new lower and upper bounds for the probability.
The two models proposed herewith generalize existing models in the literature, the corresponding theoretical results effectively improve those known results and hence carry an insight on designing a more secure system and enhancing the security of an existing system.
|
2 |
Processus de risque : modélisation de la dépendance et évaluation du risque sous des contraintes de convexité / Risk process : dependence modeling and risk evaluation under convexity constraintsKacem, Manel 20 March 2013 (has links)
Ce travail de thèse porte principalement sur deux problématiques différentes mais qui ont pour point commun, la contribution à la modélisation et à la gestion du risque en actuariat. Dans le premier thème de recherche abordé dans cette thèse, on s'intéresse à la modélisation de la dépendance en assurance et en particulier, on propose une extension des modèles à facteurs communs qui sont utilisés en assurance. Dans le deuxième thème de recherche, on considère les distributions discrètes décroissantes et on s'intéresse à l'étude de l'effet de l'ajout de la contrainte de convexité sur les extrema convexes. Des applications en liaison avec la théorie de la ruine motivent notre intérêt pour ce sujet. Dans la première partie de la thèse, on considère un modèle de risque en temps discret dans lequel les variables aléatoires sont dépendantes mais conditionnellement indépendantes par rapport à un facteur commun. Dans ce cadre de dépendance on introduit un nouveau concept pour la modélisation de la dépendance temporelle entre les risques d'un portefeuille d'assurance. En effet, notre modélisation inclut des processus de mémoire non bornée. Plus précisément, le conditionnement se fait par rapport à un vecteur aléatoire de longueur variable au cours du temps. Sous des conditions de mélange du facteur et d'une structure de mélange conditionnel, nous avons obtenu des propriétés de mélanges pour les processus non conditionnels. Avec ces résultats on peut obtenir des propriétés asymptotiques intéressantes. On note que dans notre étude asymptotique c'est plutôt le temps qui tend vers l'infini que le nombre de risques. On donne des résultats asymptotiques pour le processus agrégé, ce qui permet de donner une approximation du risque d'une compagnie d'assurance lorsque le temps tend vers l'infini. La deuxième partie de la thèse porte sur l'effet de la contrainte de convexité sur les extrema convexes dans la classe des distributions discrètes dont les fonctions de masse de probabilité (f.m.p.) sont décroissantes sur un support fini. Les extrema convexes dans cette classe de distributions sont bien connus. Notre but est de souligner comment les contraintes de forme supplémentaires de type convexité modifient ces extrema. Deux cas sont considérés : la f.m.p. est globalement convexe sur N et la f.m.p. est convexe seulement à partir d'un point positif donné. Les extrema convexes correspondants sont calculés en utilisant de simples propriétés de croisement entre deux distributions. Plusieurs illustrations en théorie de la ruine sont présentées / In this thesis we focus on two different problems which have as common point the contribution to the modeling and to the risk management in insurance. In the first research theme, we are interested by the modeling of the dependence in insurance. In particular we propose an extension to model with common factor. In the second research theme we consider the class of nonincreasing discrete distributions and we are interested in studying the effect of additional constraint of convexity on the convex extrema. Some applications in ruin theory motivate our interest to this subject. The first part of this thesis is concerned with factor models for the modeling of the dependency in insurance. An interesting property of these models is that the random variables are conditionally independent with respect to a factor. We propose a new model in which the conditioning is with respect to the entire memory of the factor. In this case we give some mixing properties of risk process under conditions related to the mixing properties of the factor process and to the conditional mixing risk process. The law of the sum of random variables has a great interest in actuarial science. Therefore we give some conditions under which the law of the aggregated process converges to a normal distribution. In the second part of the thesis we consider the class of discrete distributions whose probability mass functions (p.m.f.) are nonincreasing on a finite support. Convex extrema in that class of distributions are well-known. Our purpose is to point out how additional shape constraints of convexity type modify these extrema. Two cases are considered : the p.m.f. is globally convex on N or it is convex only from a given positive point. The corresponding convex extrema are derived by using a simple crossing property between two distributions. Several applications to some ruin problems are presented for illustration
|
3 |
Study of Unified Multivariate Skew Normal Distribution with Applications in Finance and Actuarial ScienceAziz, Mohammad Abdus Samad 20 June 2011 (has links)
No description available.
|
Page generated in 0.0619 seconds