• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modes of action of a fatty diamine surfactant on mechanical properties of natural rubber compounds

Ismail, Hanafi January 1994 (has links)
The modes of action of a diamine salt of fatty acid with a general structure of [RNHz+(CHz)JNH3+(R'COO-)z], referred to as a multifunctional additive (MFA) in carbon black and silica filled natural rubber (NR) compound have been studied. The mechanical properties have been enhanced by incorporating the MFA. Optimum mechanical properties for the natural rubber filled with carbon black compound are obtained at an MFA level which is estimated to give complete monolayer coverage of the carbon black surface. Studies on silica filled NR show a much higher optimum MFA level than for carbon black filled compounds, which is attributed to a different orientation of the MFA molecules at the silica-rubber interface. The MFA molecules may stand on the filler surface with their polar sites attached to its surface, giving rise to a much higher monolayer value. Filler dispersion, measured by computer-aided image analysis and scanning electron microscopy (SEM), showed that MFA gives improved dispersion at equivalent mixing time. The effect of the MFA on crosslink density of carbon black filled NR compounds was found to be small, in contrast to silica filled NR compounds, where the increase in crosslink density enhanced properties significantly. Techniques to examine the properties of compounds with and without MFA at equivalent levels of filler dispersion have been developed. Results show that, in addition to the improvement in filler dispersion, increased energy dissipation at the rubber-MFA-filler interfaces improves tear and tensile strength. A mechanism of adsorption to explain the mode of action of the MFA at the elastomer/filler interface has also been proposed.
2

The influence of agglomerate structure on the dispersive mixing process

Horwatt, Steven Wayne January 1991 (has links)
No description available.
3

Investigation of Contaminant Transport in Tidally-Influenced Aquifers: Experiment and Analysis

Chen, Hua 18 November 2010 (has links)
Tidally-induced head fluctuation is a natural phenomenon in coastal regions. The discharge of groundwater through sediments will occur anywhere that the aquifer is hydraulically connected to a surface water body and the time averaged tidally-influenced water level in the aquifer is higher than sea level, and almost all coastal regions are subject to such flow. With the development of coastal areas, the discharge of groundwater contaminants into tidally affected coastal water bodies has become a significant problem. Biota that live in the benthic region are known to be sensitive to the concentration of discharging anthropogenic chemical compounds. Thus the contaminant concentration entering the benthos is of very significant practical importance and its study is the focus of this dissertation. An investigation of the effect of tides on the concentration of groundwater contaminants discharging to a surface water body is studied using a one-dimensional homogeneous sand column. Results of the experiment are confirmed using a three-dimensional heterogeneous groundwater tank model. A constant water level is imposed upgradient, and the downgradient water level is controlled by a wave generator that controls the hydraulic head to mimic a 12 hour tidal fluctuation. The experimental results demonstrate that the tidal fluctuations in the downgradient reservoir result in a decrease in average contaminant concentration at the point of groundwater discharge to the surface-water body. The further upstream the well is located, the smaller the amplitude of the concentration oscillation. In addition, upstream migration of concentration oscillations is observed in spite of a net downgradient flow. Fourier analysis suggests that the dominant frequency of the peaks of pressure and chemical data at different locations along the length of the column is identically two cycles per day and that the amplitudes of the concentration oscillations increase with time at measurement locations at the upstream responding probes. As the classical groundwater flow and transport model cannot reproduce the phenomena we observed, an innovative multi-mobility model, is proposed with one highly mobile liquid phase, one less mobile liquid phase and a solid phase. Averaging theory is applied to develop the mass conservation equation from the microscale to the macroscale and facilitate the reduction of dimensionality to obtain one-dimensional governing equations with closure relations. A new finite volume method is utilized to solve the resulting equations. The simulation confirms the existence of the enhanced tidally-induced mixing process.
4

A numerical study of flow hydrodynamics and mixing processes at open channel confluences

Cheng, Zhengyang 01 January 2017 (has links)
River confluences - locations where rivers join one another - are fundamental components of natural drainage networks. Differences in topography, geology, soils, land use, and human activities within watersheds upstream of confluences can produce differences in thermal or chemical properties of river flows and in the materials transported by these flows. Mixing is initiated along the mixing interface (MI) that develops between the two incoming streams with different properties. Therefore, the understanding of fluvial processes at confluences is important for determining river mixing both at and downstream of individual confluences and at the scale of drainage networks. The primary goal of this thesis is to describe the main mechanisms that control mixing and transport at river confluences and the role played by the complex flow structures in the flow and how they change with planform geometry and other flow and geometrical parameters. The study is carried out using Computational Fluid Dynamics modeling based on the state of the art Detached Eddy Simulation approach and High Performance Computing. By starting with a mixing layer between parallel streams with simple geometry, the model is validated based on laboratory experiment data. Moreover, some hypotheses regarding the growth of the mixing layer are amended with the extensive data provided by the model, which is a valuable supplement to the experiment. By performing a detailed parametric study in very long and wide domains for simplified cases one can focus on the spatial development of the MI and the large scale coherent structures forming within and in the vicinity of the MI without the complications of other factors. More specifically, the influence of velocity and density difference of the two streams, flow depth, inflow conditions and angles between the two streams on the spatial development of the MI is analyzed. The data resulting from these simulations conducted in simple geometries is a unique set of data which can be used to test and improve theoretical models used to predict global parameters describing flow and mixing at natural river confluences. In particular, this research uses for the first time well resolved Large Eddy Simulation based techniques to investigate how density differences between the incoming streams affect the spatial development of the mixing interface and mixing downstream of the confluence apex. In order to investigate flow dynamics, mixing processes and effects of temperature stratifications at natural river confluences with discordant bed, a series of simulations is performed for the confluence of the Ebro and Segre Rivers in Spain, which is one of the most studied confluences in Europe. With the detailed survey data of the confluence bed and flow conditions data provided, the goal is to understand the main mechanisms responsible for mixing at a confluence with a large bed discordance and how the velocity ratio between the two incoming streams affects mixing. Besides, more insights are provided that if temperature stratification effects affect significantly flow structure and mixing based on real conditions recorded at a natural confluence. The study provides a comprehensive set of flow data in the confluence including velocity, temperature distribution etc. It serves as important supplement to the field measurements, which are generally more difficult to obtain. It also allows estimating scale effects between field conditions and conditions at which laboratory experiments of confluence flow and mixing are conducted.
5

Polar Coding in Certain New Transmission Environments

Timmel, Stephen Nicholas 15 May 2023 (has links)
Polar codes, introduced by Arikan in 2009, have attracted considerable interest as an asymptotically capacity-achieving code with sufficient performance advantages to merit inclusion in the 5G standard. Polar codes are constructed directly from an explicit model of the communication channel, so their performance is dependent on a detailed understanding of the transmission environment. We partially remove a basic assumption in coding theory that channels are identical and independent by extending polar codes to several types of channels with memory, including periodic Markov processes and Information Regular processes. In addition, we consider modifications to the polar code construction so that the inclusion of a shared secret in the frozen set naturally produces encryption via one-time pad. We describe one such modification in terms of the achievable frozen sets which are compatible with the polar code automorphism group. We then provide a partial characterization of these frozen sets using an explicit construction for the Linear Extension Diameter of channel entropies. / Doctor of Philosophy / Efficient, reliable communication has become an essential component of modern society. Error-correcting codes allow for the use of redundant symbols to fix errors in transmission. While it has long been known that communication channels have an inherent capacity describing the optimal redundancy required for reliable transmission, explicit constructions which achieve this capacity have proved elusive. Our focus is the recently discovered family of polar codes, which are known to be asymptotically capacity-achieving. Polar codes also perform well enough in practice to merit inclusion in the 5G wireless standard shortly after their creation. The polarization process uses an explicit model of the channel and a recursive construction to concentrate errors in a few symbols (called the frozen set), which are then simply ignored. This reliance on an explicit channel model is problematic due to a long-standing assumption in coding theory that the probability of error in each symbol is identical and independent. We extend existing results to explore persistent sources of interference modelling environments such as nearby power lines or prolonged outages. While polar codes behave quite well in these new settings, some forms of memory can only be overcome using very long codewords. We next explore an application relating to secure communication, where messages must be recovered by a legitimate receiver but not by an eavesdropper. Polar codes behave quite well in this environment as well, as we can separately compute which symbols can be recovered by each party and use only those with the desired properties. We extend a recent result which proposes the use of a shared secret in the code construction to further complicate recovery by an eavesdropper. We consider several modifications to the construction of polar codes which allow the shared secret to be used for encryption in addition to the existing information theoretic use. We discover that this task is closely related to the unsolved problem of determining which symbols are in the frozen set for a particular channel. We conclude with partial results to this problem, including two choices of frozen set which are, in some sense, maximally separated.
6

Processus de risque : modélisation de la dépendance et évaluation du risque sous des contraintes de convexité / Risk process : dependence modeling and risk evaluation under convexity constraints

Kacem, Manel 20 March 2013 (has links)
Ce travail de thèse porte principalement sur deux problématiques différentes mais qui ont pour point commun, la contribution à la modélisation et à la gestion du risque en actuariat. Dans le premier thème de recherche abordé dans cette thèse, on s'intéresse à la modélisation de la dépendance en assurance et en particulier, on propose une extension des modèles à facteurs communs qui sont utilisés en assurance. Dans le deuxième thème de recherche, on considère les distributions discrètes décroissantes et on s'intéresse à l'étude de l'effet de l'ajout de la contrainte de convexité sur les extrema convexes. Des applications en liaison avec la théorie de la ruine motivent notre intérêt pour ce sujet. Dans la première partie de la thèse, on considère un modèle de risque en temps discret dans lequel les variables aléatoires sont dépendantes mais conditionnellement indépendantes par rapport à un facteur commun. Dans ce cadre de dépendance on introduit un nouveau concept pour la modélisation de la dépendance temporelle entre les risques d'un portefeuille d'assurance. En effet, notre modélisation inclut des processus de mémoire non bornée. Plus précisément, le conditionnement se fait par rapport à un vecteur aléatoire de longueur variable au cours du temps. Sous des conditions de mélange du facteur et d'une structure de mélange conditionnel, nous avons obtenu des propriétés de mélanges pour les processus non conditionnels. Avec ces résultats on peut obtenir des propriétés asymptotiques intéressantes. On note que dans notre étude asymptotique c'est plutôt le temps qui tend vers l'infini que le nombre de risques. On donne des résultats asymptotiques pour le processus agrégé, ce qui permet de donner une approximation du risque d'une compagnie d'assurance lorsque le temps tend vers l'infini. La deuxième partie de la thèse porte sur l'effet de la contrainte de convexité sur les extrema convexes dans la classe des distributions discrètes dont les fonctions de masse de probabilité (f.m.p.) sont décroissantes sur un support fini. Les extrema convexes dans cette classe de distributions sont bien connus. Notre but est de souligner comment les contraintes de forme supplémentaires de type convexité modifient ces extrema. Deux cas sont considérés : la f.m.p. est globalement convexe sur N et la f.m.p. est convexe seulement à partir d'un point positif donné. Les extrema convexes correspondants sont calculés en utilisant de simples propriétés de croisement entre deux distributions. Plusieurs illustrations en théorie de la ruine sont présentées / In this thesis we focus on two different problems which have as common point the contribution to the modeling and to the risk management in insurance. In the first research theme, we are interested by the modeling of the dependence in insurance. In particular we propose an extension to model with common factor. In the second research theme we consider the class of nonincreasing discrete distributions and we are interested in studying the effect of additional constraint of convexity on the convex extrema. Some applications in ruin theory motivate our interest to this subject. The first part of this thesis is concerned with factor models for the modeling of the dependency in insurance. An interesting property of these models is that the random variables are conditionally independent with respect to a factor. We propose a new model in which the conditioning is with respect to the entire memory of the factor. In this case we give some mixing properties of risk process under conditions related to the mixing properties of the factor process and to the conditional mixing risk process. The law of the sum of random variables has a great interest in actuarial science. Therefore we give some conditions under which the law of the aggregated process converges to a normal distribution. In the second part of the thesis we consider the class of discrete distributions whose probability mass functions (p.m.f.) are nonincreasing on a finite support. Convex extrema in that class of distributions are well-known. Our purpose is to point out how additional shape constraints of convexity type modify these extrema. Two cases are considered : the p.m.f. is globally convex on N or it is convex only from a given positive point. The corresponding convex extrema are derived by using a simple crossing property between two distributions. Several applications to some ruin problems are presented for illustration
7

Generation and interfacing of single-photon light with matter and control of ultrafast atomic dynamics for quantum information processing

Gogyan, Anahit 11 October 2010 (has links) (PDF)
We develop a robust and realistic mechanism for the generation of indistinguishable single-photon (SP) pulses with identical frequency and polarization. They are produced on demand from a coupled double-Raman atom-cavity system driven by a sequence of laser pump pulses. This scheme features a high efficiency, the ability to produce a sequence of narrow-band SP pulses with a delay determined only by the pump repetition rate, and simplicity of the system free from complications such as repumping process and environmental dephasing. We propose and analyze a simple scheme of parametric frequency conversion for optical quantum information in cold atomic ensembles. Its remarkable properties are minimal losses and distortion of the pulse shape, and the persistence of quantum coherence and entanglement. Efficient conversion of frequency between different spectral regions is shown. A method for the generation of frequency-entangled single photon states is discussed. We suggest a robust and simple mechanism for the coherent excitation of molecules or atoms to a superposition of pre-selected states by a train of femtosecond laser pulses, combined with narrow-band coupling field. The theory of quantum beatings in the generation of ultra-violet radiation via a four wave mixing in pump-probe experiments is developed. The results are in good agreement with experimental data observed in Rb vapor when the laser phase fluctuations are significant.
8

線型モデルによる砕屑性堆積物形成過程の解析

水谷, 伸治郎 03 1900 (has links)
科学研究費補助金 研究種目:一般研究(C) 課題番号:03640640 研究代表者:水谷 伸治郎 研究期間:1991-1992年度
9

Generation and interfacing of single-photon light with matter and control of ultrafast atomic dynamics for quantum information processing / Génération et interfaçage de lumière à photon unique et contrôle de la dynamique atomique ultra-rapide pour l’information quantique

Gogyan, Anahit 11 October 2010 (has links)
Nous développons un mécanisme robuste et réaliste pour la génération de photons uniques indiscernables avec des impulsions de fréquence et de polarisation identiques. Ils sont produits à la demande à partir d'un système couplé atome- cavité double-Raman en interaction avec une séquence d'impulsions laser de pompe. Ce processus combine un rendement élevé, la capacité de produire une séquence d'impulsions de photons uniques à bande étroite avec un retard déterminé seulement par le taux de répétition de la pompe, avec la simplicité du système libre de complications comme le repompage et le déphasage de l'environnement.Nous proposons et analysons un schéma simple de conversion paramétrique de fréquence pour l'information quantique optique dans des ensembles atomiques froids. Ses propriétés remarquables sont des pertes réduites, une distorsion de la forme des impulsions minimale, ainsi que la persistance de la cohérence quantique et de l’intrication. Une conversion efficace de fréquence entre les différentes régions spectrales est montrée. Une méthode de génération d’états caractérisant des photons uniques intriqués en fréquence est discutée.Nous proposons un mécanisme robuste et simple d'excitation cohérente de molécules et d’atomes en une superposition d'états pré-sélectionnés par un train d'impulsions laser femtoseconde, combinée avec un champ de couplage à largeur de bande étroite.La théorie des battements quantiques pour la génération du rayonnement ultra-violet par mélange à quatre ondes dans des expériences pompe-sonde est développée. Les résultats sont en bon accord avec les données expérimentales observées dans la vapeur de Rb lorsque les fluctuations de phase laser sont importantes. / We develop a robust and realistic mechanism for the generation of indistinguishable single-photon (SP) pulses with identical frequency and polarization. They are produced on demand from a coupled double-Raman atom-cavity system driven by a sequence of laser pump pulses. This scheme features a high efficiency, the ability to produce a sequence of narrow-band SP pulses with a delay determined only by the pump repetition rate, and simplicity of the system free from complications such as repumping process and environmental dephasing. We propose and analyze a simple scheme of parametric frequency conversion for optical quantum information in cold atomic ensembles. Its remarkable properties are minimal losses and distortion of the pulse shape, and the persistence of quantum coherence and entanglement. Efficient conversion of frequency between different spectral regions is shown. A method for the generation of frequency-entangled single photon states is discussed. We suggest a robust and simple mechanism for the coherent excitation of molecules or atoms to a superposition of pre-selected states by a train of femtosecond laser pulses, combined with narrow-band coupling field. The theory of quantum beatings in the generation of ultra-violet radiation via a four wave mixing in pump-probe experiments is developed. The results are in good agreement with experimental data observed in Rb vapor when the laser phase fluctuations are significant.

Page generated in 0.0579 seconds