Spelling suggestions: "subject:"comonotonicity"" "subject:"nonmonotonicity""
1 |
Option pricing techniques under stochastic delay modelsMcWilliams, Nairn Anthony January 2011 (has links)
The Black-Scholes model and corresponding option pricing formula has led to a wide and extensive industry, used by financial institutions and investors to speculate on market trends or to control their level of risk from other investments. From the formation of the Chicago Board Options Exchange in 1973, the nature of options contracts available today has grown dramatically from the single-date contracts considered by Black and Scholes (1973) to a wider and more exotic range of derivatives. These include American options, which can be exercised at any time up to maturity, as well as options based on the weighted sums of assets, such as the Asian and basket options which we consider. Moreover, the underlying models considered have also grown in number and in this work we are primarily motivated by the increasing interest in past-dependent asset pricing models, shown in recent years by market practitioners and prominent authors. These models provide a natural framework that considers past history and behaviour, as well as present information, in the determination of the future evolution of an underlying process. In our studies, we explore option pricing techniques for arithmetic Asian and basket options under a Stochastic Delay Differential Equation (SDDE) approach. We obtain explicit closed-form expressions for a number of lower and upper bounds before giving a practical, numerical analysis of our result. In addition, we also consider the properties of the approximate numerical integration methods used and state the conditions for which numerical stability and convergence can be achieved.
|
2 |
Comonotonicity and Choquet integrals of Hermitian operators and their applications.Vourdas, Apostolos 20 January 2016 (has links)
yes / In a quantum system with d-dimensional Hilbert space, the Q-function of a Hermitian positive
semide nite operator , is de ned in terms of the d2 coherent states in this system. The Choquet
integral CQ( ) of the Q-function of , is introduced using a ranking of the values of the Q-function,
and M obius transforms which remove the overlaps between coherent states. It is a gure of merit
of the quantum properties of Hermitian operators, and it provides upper and lower bounds to
various physical quantities in terms of the Q-function. Comonotonicity is an important concept
in the formalism, which is used to formalize the vague concept of physically similar operators.
Comonotonic operators are shown to be bounded, with respect to an order based on Choquet
integrals. Applications of the formalism to the study of the ground state of a physical system, are
discussed. Bounds for partition functions, are also derived.
|
3 |
Some topics in Mathematical Finance: Asian basket option pricing, Optimal investment strategiesDiallo, Ibrahima 06 January 2010 (has links)
This thesis presents the main results of my research in the field of computational finance and portfolios optimization. We focus on pricing Asian basket options and portfolio problems in the presence of inflation with stochastic interest rates.
In Chapter 2, we concentrate upon the derivation of bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework.We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151–168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3–33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55–57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51–90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1–52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity
In Chapter 3, we propose some moment matching pricing methods for European-style discrete arithmetic Asian basket options in a Black & Scholes framework. We generalize the approach of Curran M. (1994) [Valuing Asian and portfolio by conditioning on the geometric mean price”, Management science, 40, 1705-1711] and of Deelstra G., Liinev J. and Vanmaele M. (2004) [Pricing of arithmetic basket options by conditioning”, Insurance: Mathematics & Economics] in several ways. We create a framework that allows for a whole class of conditioning random variables which are normally distributed. We moment match not only with a lognormal random variable but also with a log-extended-skew-normal random variable. We also improve the bounds of Deelstra G., Diallo I. and Vanmaele M. (2008). [Bounds for Asian basket options”, Journal of Computational and Applied Mathematics, 218, 215-228]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and
time-to-maturity.
In Chapter 4, we use the stochastic dynamic programming approach in order to extend
Brennan and Xia’s unconstrained optimal portfolio strategies by investigating the case in which interest rates and inflation rates follow affine dynamics which combine the model of Cox et al. (1985) [A Theory of the Term Structure of Interest Rates, Econometrica, 53(2), 385-408] and the model of Vasicek (1977) [An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188]. We first derive the nominal price of a zero coupon bond by using the evolution PDE which can be solved by reducing the problem to the solution of three ordinary differential equations (ODE). To solve the corresponding control problems we apply a verification theorem without the usual Lipschitz assumption given in Korn R. and Kraft H.(2001)[A Stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40(4), 1250-1269] or [45].
|
4 |
Comparing Approximations for Risk Measures Related to Sums of Correlated Lognormal Random VariablesKarniychuk, Maryna 09 January 2007 (has links) (PDF)
In this thesis the performances of different approximations are compared for a standard actuarial and
financial problem: the estimation of quantiles and conditional
tail expectations of the final value of a series of discrete cash
flows.
To calculate the risk measures such as quantiles and Conditional
Tail Expectations, one needs the distribution function of the
final wealth. The final value of a series of discrete payments in
the considered model is the sum of dependent lognormal random
variables. Unfortunately, its distribution function cannot be
determined analytically. Thus usually one has to use
time-consuming Monte Carlo simulations. Computational time still
remains a serious drawback of Monte Carlo simulations, thus
several analytical techniques for approximating the distribution
function of final wealth are proposed in the frame of this thesis.
These are the widely used moment-matching approximations and
innovative comonotonic approximations.
Moment-matching methods approximate the unknown distribution
function by a given one in such a way that some characteristics
(in the present case the first two moments) coincide. The ideas of
two well-known approximations are described briefly. Analytical
formulas for valuing quantiles and Conditional Tail Expectations
are derived for both approximations.
Recently, a large group of scientists from Catholic University
Leuven in Belgium has derived comonotonic upper and comonotonic
lower bounds for sums of dependent lognormal random variables.
These bounds are bounds in the terms of "convex order". In order
to provide the theoretical background for comonotonic
approximations several fundamental ordering concepts such as
stochastic dominance, stop-loss and convex order and some
important relations between them are introduced. The last two
concepts are closely related. Both stochastic orders express which
of two random variables is the "less dangerous/more attractive"
one.
The central idea of comonotonic upper bound approximation is to
replace the original sum, presenting final wealth, by a new sum,
for which the components have the same marginal distributions as
the components in the original sum, but with "more dangerous/less
attractive" dependence structure. The upper bound, or saying
mathematically, convex largest sum is obtained when the components
of the sum are the components of comonotonic random vector.
Therefore, fundamental concepts of comonotonicity theory which are
important for the derivation of convex bounds are introduced. The
most wide-spread examples of comonotonicity which emerge in
financial context are described.
In addition to the upper bound a lower bound can be derived as
well. This provides one with a measure of the reliability of the
upper bound. The lower bound approach is based on the technique of
conditioning. It is obtained by applying Jensen's inequality for
conditional expectations to the original sum of dependent random
variables. Two slightly different version of conditioning random
variable are considered in the context of this thesis. They give
rise to two different approaches which are referred to as
comonotonic lower bound and comonotonic "maximal variance" lower
bound approaches.
Special attention is given to the class of distortion risk
measures. It is shown that the quantile risk measure as well as
Conditional Tail Expectation (under some additional conditions)
belong to this class. It is proved that both risk measures being
under consideration are additive for a sum of comonotonic random
variables, i.e. quantile and Conditional Tail Expectation for a
comonotonic upper and lower bounds can easily be obtained by
summing the corresponding risk measures of the marginals involved.
A special subclass of distortion risk measures which is referred
to as class of concave distortion risk measures is also under
consideration. It is shown that quantile risk measure is not a
concave distortion risk measure while Conditional Tail Expectation
(under some additional conditions) is a concave distortion risk
measure. A theoretical justification for the fact that "concave"
Conditional Tail Expectation preserves convex order relation
between random variables is given. It is shown that this property
does not necessarily hold for the quantile risk measure, as it is
not a concave risk measure.
Finally, the accuracy and efficiency of two moment-matching,
comonotonic upper bound, comonotonic lower bound and "maximal
variance" lower bound approximations are examined for a wide range
of parameters by comparing with the results obtained by Monte
Carlo simulation. It is justified by numerical results that,
generally, in the current situation lower bound approach
outperforms other methods. Moreover, the preservation of convex
order relation between the convex bounds for the final wealth by
Conditional Tail Expectation is demonstrated by numerical results.
It is justified numerically that this property does not
necessarily hold true for the quantile.
|
5 |
Comparing Approximations for Risk Measures Related to Sums of Correlated Lognormal Random VariablesKarniychuk, Maryna 30 November 2006 (has links)
In this thesis the performances of different approximations are compared for a standard actuarial and
financial problem: the estimation of quantiles and conditional
tail expectations of the final value of a series of discrete cash
flows.
To calculate the risk measures such as quantiles and Conditional
Tail Expectations, one needs the distribution function of the
final wealth. The final value of a series of discrete payments in
the considered model is the sum of dependent lognormal random
variables. Unfortunately, its distribution function cannot be
determined analytically. Thus usually one has to use
time-consuming Monte Carlo simulations. Computational time still
remains a serious drawback of Monte Carlo simulations, thus
several analytical techniques for approximating the distribution
function of final wealth are proposed in the frame of this thesis.
These are the widely used moment-matching approximations and
innovative comonotonic approximations.
Moment-matching methods approximate the unknown distribution
function by a given one in such a way that some characteristics
(in the present case the first two moments) coincide. The ideas of
two well-known approximations are described briefly. Analytical
formulas for valuing quantiles and Conditional Tail Expectations
are derived for both approximations.
Recently, a large group of scientists from Catholic University
Leuven in Belgium has derived comonotonic upper and comonotonic
lower bounds for sums of dependent lognormal random variables.
These bounds are bounds in the terms of "convex order". In order
to provide the theoretical background for comonotonic
approximations several fundamental ordering concepts such as
stochastic dominance, stop-loss and convex order and some
important relations between them are introduced. The last two
concepts are closely related. Both stochastic orders express which
of two random variables is the "less dangerous/more attractive"
one.
The central idea of comonotonic upper bound approximation is to
replace the original sum, presenting final wealth, by a new sum,
for which the components have the same marginal distributions as
the components in the original sum, but with "more dangerous/less
attractive" dependence structure. The upper bound, or saying
mathematically, convex largest sum is obtained when the components
of the sum are the components of comonotonic random vector.
Therefore, fundamental concepts of comonotonicity theory which are
important for the derivation of convex bounds are introduced. The
most wide-spread examples of comonotonicity which emerge in
financial context are described.
In addition to the upper bound a lower bound can be derived as
well. This provides one with a measure of the reliability of the
upper bound. The lower bound approach is based on the technique of
conditioning. It is obtained by applying Jensen's inequality for
conditional expectations to the original sum of dependent random
variables. Two slightly different version of conditioning random
variable are considered in the context of this thesis. They give
rise to two different approaches which are referred to as
comonotonic lower bound and comonotonic "maximal variance" lower
bound approaches.
Special attention is given to the class of distortion risk
measures. It is shown that the quantile risk measure as well as
Conditional Tail Expectation (under some additional conditions)
belong to this class. It is proved that both risk measures being
under consideration are additive for a sum of comonotonic random
variables, i.e. quantile and Conditional Tail Expectation for a
comonotonic upper and lower bounds can easily be obtained by
summing the corresponding risk measures of the marginals involved.
A special subclass of distortion risk measures which is referred
to as class of concave distortion risk measures is also under
consideration. It is shown that quantile risk measure is not a
concave distortion risk measure while Conditional Tail Expectation
(under some additional conditions) is a concave distortion risk
measure. A theoretical justification for the fact that "concave"
Conditional Tail Expectation preserves convex order relation
between random variables is given. It is shown that this property
does not necessarily hold for the quantile risk measure, as it is
not a concave risk measure.
Finally, the accuracy and efficiency of two moment-matching,
comonotonic upper bound, comonotonic lower bound and "maximal
variance" lower bound approximations are examined for a wide range
of parameters by comparing with the results obtained by Monte
Carlo simulation. It is justified by numerical results that,
generally, in the current situation lower bound approach
outperforms other methods. Moreover, the preservation of convex
order relation between the convex bounds for the final wealth by
Conditional Tail Expectation is demonstrated by numerical results.
It is justified numerically that this property does not
necessarily hold true for the quantile.
|
6 |
Study of Unified Multivariate Skew Normal Distribution with Applications in Finance and Actuarial ScienceAziz, Mohammad Abdus Samad 20 June 2011 (has links)
No description available.
|
7 |
Mortality linked derivatives and their pricingBahl, Raj Kumari January 2017 (has links)
This thesis addresses the absence of explicit pricing formulae and the complexity of proposed models (incomplete markets framework) in the area of mortality risk management requiring the application of advanced techniques from the realm of Financial Mathematics and Actuarial Science. In fact, this is a multi-essay dissertation contributing in the direction of designing and pricing mortality-linked derivatives and offering the state of art solutions to manage longevity risk. The first essay investigates the valuation of Catastrophic Mortality Bonds and, in particular, the case of the Swiss Re Mortality Bond 2003 as a primary example of this class of assets. This bond was the first Catastrophic Mortality Bond to be launched in the market and encapsulates the behaviour of a well-defined mortality index to generate payoffs for bondholders. Pricing this type of bond is a challenging task and no closed form solution exists in the literature. In my approach, we adapt the payoff of such a bond in terms of the payoff of an Asian put option and present a new methodology to derive model-independent bounds for catastrophic mortality bonds by exploiting the theory of comonotonicity. While managing catastrophic mortality risk is an upheaval task for insurers and re-insurers, the insurance industry is facing an even bigger challenge - the challenge of coping up with increased life expectancy. The recent years have witnessed unprecedented changes in mortality rate. As a result academicians and practitioners have started treating mortality in a stochastic manner. Moreover, the assumption of independence between mortality and interest rate has now been replaced by the observation that there is indeed a correlation between the two rates. Therefore, my second essay studies valuation of Guaranteed Annuity Options (GAOs) under the most generalized modeling framework where both interest rate and mortality risk are stochastic and correlated. Pricing these types of options in the correlated environment is an arduous task and a closed form solution is non-existent. In my approach, I employ the use of doubly stochastic stopping times to incorporate the randomness about the time of death and employ a suitable change of measure to facilitate the valuation of survival benefit, there by adapting the payoff of the GAO in terms of the payoff of a basket call option. I then derive general price bounds for GAOs by employing the theory of comonotonicity and the Rogers-Shi (Rogers and Shi, 1995) approach. Moreover, I suggest some `model-robust' tight bounds based on the moment generating function (m.g.f.) and characteristic function (c.f.) under the affine set up. The strength of these bounds is their computational speed which makes them indispensable for annuity providers who rely heavily on Monte Carlo simulations to calculate the fair market value of Guaranteed Annuity Options. In fact, sans Monte Carlo, the academic literature does not offer any solution for the pricing of the GAOs. I illustrate the performance of the bounds for a variety of affine processes governing the evolution of mortality and the interest rate by comparing them with the benchmark Monte Carlo estimates. Through my work, I have been able to express the payoffs of two well known modern mortality products in terms of payoffs of financial derivatives, there by filling the gaps in the literature and offering state of art techniques for pricing of these sophisticated instruments.
|
8 |
Eléments de théorie du risque en finance et assurance / Elements of risk theory in finance and insuranceMostoufi, Mina 17 December 2015 (has links)
Cette thèse traite de la théorie du risque en finance et en assurance. La mise en pratique du concept de comonotonie, la dépendance du risque au sens fort, est décrite pour identifier l’optimum de Pareto et les allocations individuellement rationnelles Pareto optimales, la tarification des options et la quantification des risques. De plus, il est démontré que l’aversion au risque monotone à gauche, un raffinement pertinent de l’aversion forte au risque, caractérise tout décideur à la Yaari, pour qui, l’assurance avec franchise est optimale. Le concept de comonotonie est introduit et discuté dans le chapitre 1. Dans le cas de risques multiples, on adopte l’idée qu’une forme naturelle pour les compagnies d’assurance de partager les risques est la Pareto optimalité risque par risque. De plus, l’optimum de Pareto et les allocations individuelles Pareto optimales sont caractérisées. Le chapitre 2 étudie l’application du concept de comonotonie dans la tarification des options et la quantification des risques. Une nouvelle variable de contrôle de la méthode de Monte Carlo est introduite et appliquée aux “basket options”, aux options asiatiques et à la TVaR. Finalement dans le chapitre 3, l’aversion au risque au sens fort est raffinée par l’introduction de l’aversion au risque monotone à gauche qui caractérise l’optimalité de l’assurance avec franchise dans le modèle de Yaari. De plus, il est montré que le calcul de la franchise s’effectue aisément. / This thesis deals with the risk theory in Finance and Insurance. Application of the Comonotonicity concept, the strongest risk dependence, is described for identifying the Pareto optima and Individually Rational Pareto optima allocations, option pricing and quantification of risk. Furthermore it is shown that the left monotone risk aversion, a meaningful refinement of strong risk aversion, characterizes Yaari’s decision makers for whom deductible insurance is optimal. The concept of Comonotonicity is introduced and discussed in Chapter 1. In case of multiple risks, the idea that a natural way for insurance companies to optimally share risks is risk by risk Pareto-optimality is adopted. Moreover, the Pareto optimal and individually Pareto optimal allocations are characterized. The Chapter 2 investigates the application of the Comonotonicity concept in option pricing and quantification of risk. A novel control variate Monte Carlo method is introduced and its application is explained for basket options, Asian options and TVaR. Finally in Chapter 3 the strong risk aversion is refined by introducing the left-monotone risk aversion which characterizes the optimality of deductible insurance within the Yaari’s model. More importantly, it is shown that the computation of the deductible is tractable.
|
9 |
Essays in risk management: conditional expectation with applications in finance and insuranceMaj, Mateusz 08 June 2012 (has links)
In this work we study two problems motivated by Risk Management: the optimal design of financial products from an investor's point of view and the calculation of bounds and approximations for sums involving non-independent random variables. The element that interconnects these two topics is the notion of conditioning, a fundamental concept in probability and statistics which appears to be a useful device in finance. In the first part of the dissertation, we analyse structured products that are now widespread in the banking and insurance industry. These products typically protect the investor against bearish stock markets while offering upside participation when the markets are bullish. Examples of these products include capital guaranteed funds commercialised by banks, and equity linked contracts sold by insurers. The design of these products is complex in general and it is vital to examine to which extent they are actually interesting from the investor's point of view and whether they cannot be dominated by other strategies. In the academic literature on structured products the focus has been almost exclusively on the pricing and hedging of these instruments and less on their performance from an investor's point of view. In this work we analyse the attractiveness of these products. We assess the theoretical cost of inefficiency when buying a structured product and describe the optimal strategy explicitly if possible. Moreover we examine the cost of the inefficiency in practice. We extend the results of Dybvig (1988a, 1988b) and Cox & Leland (1982, 2000) who in the context of a complete, one-dimensional market investigated the inefficiency of path-dependent pay-offs. In the dissertation we consider this problem in one-dimensional Levy and multidimensional Black-Scholes financial markets and we provide evidence that path-dependent pay-offs should not be preferred by decision makers with a fixed investment horizon, and they should buy path-independent structures instead. In these market settings we also demonstrate the optimal contract that provides the given distribution to the consumer, and in the case of risk- averse investors we are able to propose two ways of improving the design of financial products. Finally we illustrate the theory with a few well-known securities and strategies e.g. dollar cost averaging, buy-and-hold investments and widely used portfolio insurance strategies. The second part of the dissertation considers the problem of finding the distribution of a sum of non- independent random variables. Such dependent sums appear quite often in insurance and finance, for instance in case of the aggregate claim distribution or loss distribution of an investment portfolio. An interesting avenue to cope with this problem consists in using so-called convex bounds, studied by Dhaene et al. (2002a, 2002b), who applied these to sums of log-normal random variables. In their papers they have shown how these convex bounds can be used to derive closed-form approximations for several of the risk measures of such a sum. In the dissertation we prove that unlike the log-normal case the construction of a convex lower bound in explicit form appears to be out of reach for general sums of log-elliptical risks and we show how we can construct stop-loss bounds and we use these to construct mean preserving approximations for general sums of log-elliptical distributions in explicit form. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
10 |
Some topics in mathematical finance: Asian basket option pricing, Optimal investment strategiesDiallo, Ibrahima 06 January 2010 (has links)
This thesis presents the main results of my research in the field of computational finance and portfolios optimization. We focus on pricing Asian basket options and portfolio problems in the presence of inflation with stochastic interest rates.<p><p>In Chapter 2, we concentrate upon the derivation of bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework.We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151–168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3–33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55–57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51–90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1–52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity<p><p>In Chapter 3, we propose some moment matching pricing methods for European-style discrete arithmetic Asian basket options in a Black & Scholes framework. We generalize the approach of Curran M. (1994) [Valuing Asian and portfolio by conditioning on the geometric mean price”, Management science, 40, 1705-1711] and of Deelstra G. Liinev J. and Vanmaele M. (2004) [Pricing of arithmetic basket options by conditioning”, Insurance: Mathematics & Economics] in several ways. We create a framework that allows for a whole class of conditioning random variables which are normally distributed. We moment match not only with a lognormal random variable but also with a log-extended-skew-normal random variable. We also improve the bounds of Deelstra G. Diallo I. and Vanmaele M. (2008). [Bounds for Asian basket options”, Journal of Computational and Applied Mathematics, 218, 215-228]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and<p>time-to-maturity.<p><p>In Chapter 4, we use the stochastic dynamic programming approach in order to extend<p>Brennan and Xia’s unconstrained optimal portfolio strategies by investigating the case in which interest rates and inflation rates follow affine dynamics which combine the model of Cox et al. (1985) [A Theory of the Term Structure of Interest Rates, Econometrica, 53(2), 385-408] and the model of Vasicek (1977) [An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188]. We first derive the nominal price of a zero coupon bond by using the evolution PDE which can be solved by reducing the problem to the solution of three ordinary differential equations (ODE). To solve the corresponding control problems we apply a verification theorem without the usual Lipschitz assumption given in Korn R. and Kraft H.(2001)[A Stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40(4), 1250-1269] or Kraft(2004)[Optimal Portfolio with Stochastic Interest Rates and Defaultable Assets, Springer, Berlin].<p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0622 seconds