• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rigidez de superfícies convexas em espaços homogêneos 3-dimensionais

Alcântara, Marcos Aurélio de 03 April 2013 (has links)
Made available in DSpace on 2015-04-22T22:16:05Z (GMT). No. of bitstreams: 1 Marcos Aurelio de Alcantara.pdf: 720745 bytes, checksum: 08ea1f8125881d86a363610223d345ea (MD5) Previous issue date: 2013-04-03 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / This paper presents main result of a theorem in rigidity of convex three dimensional homogeneous spaces, which was proved by Hosenberg and Tribuzy in 2011. More precisely, we prove that given smooth family of isometric immersions strictly convex f(t) : M 􀀀! N, with f(0) = f, Ke(ft(x)) = Ke(f(x)) for x 2 M and for all t, and H(ft(x)) = H(f(x)) in three distinct points x of M. Then there are isometries h(t) : N 􀀀! N such that h(t)f(t) = f. / Este trabalho apresenta como principal resultado um teorema de rigidez de superfícies convexas em espaços homogêneos tridimensionais, que foi provado por Hosenberg e Tribuzy em 2011. Mais precisamente, provaremos que dada uma família suave de imersões isométricas estritamente convexa f(t) : M 􀀀! N, com f(0) = f, Ke(ft(x)) = Ke(f(x)) para x 2 M e todo t, e H(ft(x)) = H(f(x)) em três pontos distintos x de M. Então existem isometrias h(t) : N 􀀀! N tal que h(t)f(t) = f.

Page generated in 0.0507 seconds