• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 76
  • 61
  • 16
  • 11
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 518
  • 219
  • 125
  • 76
  • 75
  • 74
  • 68
  • 64
  • 62
  • 60
  • 47
  • 42
  • 40
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Synthesis, Characterization and Applications of pH-Responsive Core-Shell-Corona Micelles in Water/Micelles à Trois Couches (CSC) Sensibles au pH en Milieu Aqueux : Synthèse, Caractérisation et Applications

Willet, Nicolas 19 September 2007 (has links)
Abstract: ABC triblock copolymers self-organize into a wide variety of supramolecular structures in the bulk. However, their associative behavior in selective solvents has scarcely been studied. Within the search for new stimuli-responsive supramolecular architectures, our attention focused on a pH-responsive polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer. In addition to the synthesis of monodisperse spherical core-shell-corona (CSC) micelles, the reversibility and the cooperativity of the response to pH variations were studied, morphological transitions were induced and multi-responsive micellar gels were prepared. The micellization mechanism, the structure, the responsiveness and the internal organization of these new nanomaterials were investigated using a combination of transmission electronic microscopy, atomic force microscopy, light scattering, small-angle neutron and X-ray scattering, nuclear magnetic resonance and rheology. Finally, efforts were geared towards potential applications. The ability of PS-b-P2VP-b-PEO CSC micelles to encapsulate and release hydrophobic species was probed and gold nanoparticles were successfully synthesized within the P2VP layer of spherical and cylindrical micelles, which acted as nanoreactors./Résumé : Les copolymères triséquencés ABC sauto-organisent et forment une large gamme de structures supramoléculaires en phase solide. Cependant, peu détudes portent sur leur comportement associatif induit par des solvants sélectifs. Dans le cadre de la recherche de nouvelles architectures supramoléculaires sensibles aux stimuli externes, nous avons entrepris létude dun copolymère triséquencé sensible au pH : polystyrène-b-poly(2-vinylpyridine)-b-poly(oxyde déthylène). Outre la synthèse de micelles sphériques de type CSC, le caractère réversible et coopératif de la réponse au pH a été étudié, ainsi que linduction de transitions morphologiques et la préparation de gels micellaires sensibles à la température et au pH. Le mécanisme de micellisation, les paramètres structuraux, la sensibilité aux stimuli ainsi que lorganisation interne de ces nouveaux nanomatériaux ont été étudiés par une combinaison de microscopies électronique à transmission et à force atomique, diffusion lumineuse, diffusion de neutrons et rayons X aux petits angles, résonance magnétique nucléaire et rhéologie. Enfin, des applications ont été envisagées : la capacité des micelles CSC à encapsuler et libérer des composés hydrophobes a été testée et des nanoparticules dor ont été synthétisées avec succès au sein de ces nanoréacteurs, cest-à-dire dans la couche de P2VP des micelles sphériques et cylindriques.
152

New nanocomposites based on poly(ethylene-co-vinyl acetate) and multiwall carbon nanotubes : preparation and characterization.

Peeterbroeck, Sophie 15 December 2006 (has links)
Carbon nanotubes (CNTs) have been a major interest of study since 1991. A panel of properties and phenomena associated with carbon nanotubes due to their special combination of dimension, structure and topology have been investigated in the last years. Recently, it appears interesting to use carbon nanotubes at low loading content to obtain materials with enhanced mechanical and thermal properties. One of the major challenges is actually to disperse easily and individually these nanotubes in polymer matrices to obtain materials with increased properties for different application uses. Ethylene-vinyl acetate (EVA) copolymer is commonly used in cable industry. It is required to introduce high contents of alumina trihydrate (ATH) or magnesium dihydroxide (MDH) as fire retardant, to avoid fire hazards and reduce flammability. But this high mineral loading results in a decrease of the mechanical performances of the materials. This work aims at studying the influence of the incorporation of multiwall carbon nanotubes (MWNTs) on the tensile properties and the fire behavior of EVA nanocomposites. This work demonstrates, on one side, the significant effect of the previous nanotube coating by a thin layer of high density polyethylene (HDPE-coating) on the mechanical behavior of the so-obtained nanocomposites and explain, on the other side, the flame retardant efficiency of MWNTs in EVA nanocomposites. An original mechanism related to the action of the MWNTs during the combustion process is proposed and the effect of the HDE-coating on the cohesion of the residues is discussed.
153

The multifarious self-assembly of triblock copolymers : from multi-responsive polymers and multi-compartment micelles

Skrabania, Katja January 2008 (has links)
New ABC triblock copolymers were synthesized by controlled free-radical polymerization via Reversible Addition-Fragmentation chain Transfer (RAFT). Compared to amphiphilic diblock copolymers, the prepared materials formed more complex self-assembled structures in water due to three different functional units. Two strategies were followed: The first approach relied on double-thermoresponsive triblock copolymers exhibiting Lower Critical Solution Temperature (LCST) behavior in water. While the first phase transition triggers the self-assembly of triblock copolymers upon heating, the second one allows to modify the self-assembled state. The stepwise self-assembly was followed by turbidimetry, dynamic light scattering (DLS) and 1H NMR spectroscopy as these methods reflect the behavior on the macroscopic, mesoscopic and molecular scale. Although the first phase transition could be easily monitored due to the onset of self-assembly, it was difficult to identify the second phase transition unambiguously as the changes are either marginal or coincide with the slow response of the self-assembled system to relatively fast changes of temperature. The second approach towards advanced polymeric micelles exploited the thermodynamic incompatibility of “triphilic” block copolymers – namely polymers bearing a hydrophilic, a lipophilic and a fluorophilic block – as the driving force for self-assembly in water. The self-assembly of these polymers in water produced polymeric micelles comprising a hydrophilic corona and a microphase-separated micellar core with lipophilic and fluorophilic domains – so called multi-compartment micelles. The association of triblock copolymers in water was studied by 1H NMR spectroscopy, DLS and cryogenic transmission electron microscopy (cryo-TEM). Direct imaging of the polymeric micelles in solution by cryo-TEM revealed different morphologies depending on the block sequence and the preparation conditions. While polymers with the sequence hydrophilic-lipophilic-fluorophilic built core-shell-corona micelles with the core being the fluorinated compartment, block copolymers with the hydrophilic block in the middle formed spherical micelles where single or multiple fluorinated domains “float” as disks on the surface of the lipophilic core. Increasing the temperature during micelle preparation or annealing of the aqueous solutions after preparation at higher temperatures induced occasionally a change of the micelle morphology or the particle size distribution. By RAFT polymerization not only the desired polymeric architectures could be realized, but the technique provided in addition a precious tool for molar mass characterization. The thiocarbonylthio moieties, which are present at the chain ends of polymers prepared by RAFT, absorb light in the UV and visible range and were employed for end-group analysis by UV-vis spectroscopy. A variety of dithiobenzoate and trithiocarbonate RAFT agents with differently substituted initiating R groups were synthesized. The investigation of their absorption characteristics showed that the intensity of the absorptions depends sensitively on the substitution pattern next to the thiocarbonylthio moiety and on the solvent polarity. According to these results, the conditions for a reliable and convenient end-group analysis by UV-vis spectroscopy were optimized. As end-group analysis by UV-vis spectroscopy is insensitive to the potential association of polymers in solution, it was advantageously exploited for the molar mass characterization of the prepared amphiphilic block copolymers. / Die Arbeit widmet sich der Synthese von neuen amphiphilen ternären "ABC" Block-Copolymeren und der Untersuchung ihrer Selbstorganisation zu mizellaren Überstrukturen in wässriger Lösung. Die Block-Copolymere wurden durch kontrollierte radikalische Polymerisation mittels des sogenannten „RAFT“ Prozesses (radical addition fragmentation chain transfer) hergestellt. Neben der Realisierung der gewünschten Polymerarchitekturen erlaubte es die Methode, die Molmassen der Polymere durch Endgruppenanalyse zu bestimmen. Die Kettenenden der Polymere tragen infolge des Polymerisationsmechanismus’ definierte Funktionalitäten, welche UV- und sichtbares Licht absorbieren und somit durch UV-vis-Spektroskopie quantifizierbar sind. Das Absorptionsverhalten der Endgruppen wurde untersucht und die UV-vis-Endgruppenanalyse optimiert. Es zeigte sich, dass die Vorteile der Methode ihre generelle Anwendbarkeit und ihre Unempfindlichkeit gegenüber der Assoziation von Polymeren in Lösung sind. Aufgrund ihrer drei unterschiedlichen Blöcke bilden die synthetisierten ABC Triblockcopolymere komplexere selbstorganisierte Strukturen als die bisher üblichen Diblockcopolymere. Die Triebkraft für ihre Selbstorganisation in wässriger Lösung ist im wesentlichen der hydrophobe Effekt. Es wurden zwei unterschiedliche Ansätze verfolgt: Zum einen wurden doppelt-schaltbare Triblockcopolymere hergestellt, von denen ein Block permanent wasserlöslich ist, während die anderen Blöcke jeweils eine untere Entmischungstemperatur in wässriger Lösung aufweisen. Diese Blöcke „schalten“ beim Erwärmen von hydrophil auf hydrophob. Oberhalb des ersten Phasenübergangs - bei der niedrigeren Entmischungstemperatur - assoziieren die Makromoleküle und bilden Polymermizellen im Nanometerbereich. Beim weiteren Erwärmen „schaltet“ auch der zweite Block und modifiziert den selbstorganisierten Zustand, während der permanent wasserlösliche Block für die Stabilisierung der Aggregate sorgt. Die Assoziation der Block-Copolymere ist nach Abkühlen der wässrigen Lösung vollständig reversibel. Die stufenweise Selbstorganisation wurde mit Hilfe von Turbidimetrie, Dynamischer Lichtstreuung (DLS) und 1H-NMR-Spektroskopie untersucht, da diese Methoden das Verhalten auf der makroskopischen, mesoskopischen und molekularen Skala widerspiegeln. Obwohl der einsetzende Selbstorganisationsprozess problemlos zu detektieren war, konnten die Veränderungen infolge des zweiten Phasenübergang nicht immer eindeutig identifiziert werden, da sie zum Teil mit der langsamen Reaktion des Systems auf relativ schnelle Temperaturänderungen zusammenfielen. Außerdem hängt die Aggregatbildung nicht nur sensibel von der detaillierten Polymerarchitektur ab, sondern unterliegt auch teilweise einer kinetischen Kontrolle. Der zweite Ansatz zu komplexeren Polymermizellen basierte auf der Inkompatibilität „triphiler“ Blockcopolymere als Triebkraft für die Selbstorganisation. Das heißt, die Block-Copolymere bestehen aus einem hydrophilen, einen lipophilen und einen fluorophilen (Fluorkohlenwasserstoff-liebenden) Teil, die jeweils miteinander unverträglich sind. Die Polymere assoziierten in Wasser zu Polymermizellen mit einer hydrophilen Korona und einem unterstrukturierten Mizellkern mit separaten Kohlenwasserstoff- und Fluorkohlenwasserstoff-Domänen – sogenannten Multi-Kompartiment-Mizellen. Die Assoziation der Triblock-Copolymere wurde mit 1H-NMR-Spektroskopie, DLS und cryogener Transmissionselektronenmikroskopie (cryo-TEM) untersucht. Die unmittelbare Abbildung der Polymermizellen in Lösung mittels cryo-TEM enthüllte unterschiedliche Morphologien in Abhängigkeit von der Blocksequenz und den Präparationsbedingungen. Während Polymere mit der Blocksequenz hydrophil-lipophil-fluorophil Kern-Schale-Korona-Mizellen mit der Fluor-Domäne als Kern bildeten, wurde eine neue, unerwartete Mizellmorphologie für die Polymere mit dem hydrophilen Block in der Mitte gefunden: Einzelne oder mehrere Fluordomänen “schwimmen” als Scheiben auf dem lipophilen Kern. Die beobachteten Morphologien sind weitgehend stabil, unterliegen aber ebenfalls - zumindest teilweise - einer kinetischen Kontrolle. So führten erhöhte Temperaturen während der Mizellpräparation gelegentlich zu einer Veränderung der Mizellmorphologie oder Partikelgröße.
154

Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymers

Weiß, Jan January 2011 (has links)
In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step. / Die Selbstorganisation von mehrfach thermisch schaltbaren Blockcopolymeren in verdünnter wässriger Lösung wurde mittels Trübungsphotometer, dynamischer Lichtstreuung, TEM Messungen, NMR sowie Fluoreszenzspektroskopie untersucht. Die schrittweise Überführung eines hydrophilen in ein hydrophobes Blockcopolymer beinhaltet ein oder mehr amphiphile Zwischenstufen mit einstellbarem hydrophilen zu lipophilen Anteil (HLB). Dies führt dazu, dass die Selbstorganisation solcher Polymere in Lösung nicht nur einem Alles-oder-nichts-Prinzip folgt sondern ein mehrstufiges Aggregationsverhalten beobachtet wird. Die Synthese von doppelt thermisch schaltbaren Diblockcopolymeren und dreifach thermisch schaltbaren Triblockcopolymeren wurde durch sequenzielle RAFT Polymerisation realisiert. Dazu wurden zweifach TMS-markierte RAFT Agentien verwendet, welche die Bestimmung der molaren Masse sowie der verbliebenen Endgruppenfunktionalität direkt aus einem Protonen NMR Spektrum erlauben. Mit diesen RAFT Agentien wurde zunächst eine Serie von doppelt thermisch schaltbaren Diblockcopolymeren aus Poly(N-n-propylacrylamid)-b-Poly(N-ethylacrylamid), welche sich lediglich durch die relativen Blocklängen unterscheiden, hergestellt. In Abhängigkeit von der relativen Blocklänge wurde ein unterschiedliches Aggregationsverhalten der Diblockcopolymere in verdünnter wässriger Lösung beobachtet. Des Weiteren wirken die komplementär TMS-markierten Endgruppen als NMR-Sonden während der schrittweisen Aggregation dieser Polymere. Reversible, temperaturabhängige Peakaufspaltung der TMS-Signale in der NMR Spektroskopie spricht für eine Aggregation in gemischte stern-/blumenartige Mizellen, in denen ein Teil der hydrophoben Endgruppen in den hyrophoben Kern zurückfaltet. Obendrein wurden dreifach thermisch schaltbare Triblockcopolymere aus Poly(N-n-propylacrylamid) (A), Poly(methoxydiethylen glycol acrylat) (B) und Poly(N-ethylacrylamid) (C) in allen möglichen Blocksequenzen (ABC, BAC, ACB) durch schrittweisen Aufbau mittels RAFT Polymerisation erhalten. Das Aggregationsverhalten dieser Polymere in verdünnter wässriger Lösung war relativ komplex und hing stark von der Position der einzelnen Blöcke in den Triblockcopolymeren ab. Besonders die Position des Blocks mit der niedrigsten LCST (A) war ausschlaggebend für die resultierenden Aggregate. So wurde oberhalb der ersten Phasenübergangstemperatur nur Aggregation der Triblockcopolymere beobachtet, wenn der A Block an einem der beiden Enden der Polymere lokalisiert war. Wurde der A Block hingegen in der Mitte der Polymere positioniert, entstanden unimere Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur, welche erst aggregierten, nachdem der zweite Block (B) seinen Phasenübergang durchlief. Die Transportereigenschaften dieser Triblockcopolymere wurden mittels Fluoreszenzspektroskopie getestet. Dazu wurde die Einlagerung eines hydrophoben, solvatochromen Fluoreszenzfarbstoffes, Nilrot, in Abhängigkeit der Temperatur untersucht. Im Gegensatz zu den Polymeren mit der Blocksequenz ABC oder ACB, zeigten die Polymere mit der Sequenz BAC eine verminderte Aufnahmefähigkeit des hydrophoben Farbstoffes oberhalb des ersten Phasenübergangs, was auf die fehlende Aggregation und die damit verbundenen relativ kleinen hydrophoben Domänen der unimolekularen Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur zurückzuführen ist. Aufgrund des zunehmenden Verlustes von funktionellen Endgruppen während der RAFT Synthese von Triblockcopolymeren wurde ein neuartiges Konzept zur Einschrittsynthese von mehrfach schaltbaren Blockcopolymeren entwickelt. Dieses erlaubt die Synthese von mehrfach schaltbaren Diblock- und Triblockcopoylmeren in einem einzelnen Reaktionsschritt. Die Copolymeriation von verschiedenen N-substituierten Maleimiden mit einem thermisch schaltbaren Styrolderivat (4-Vinylbenzylmethoxytetrakis(oxyethylene) ether) ergab alternierende Copolymere mit variabler LCST. Die Verwendung eines Überschusses dieses styrolbasierten Monomers erlaubt ferner die Synthese von Gradientenblockcopolymeren in einem einzelnen Polymerisationsschritt.
155

Solution Processable Benzotriazole, Benzimidazole And Biphenyl Containing Conjugated Copolymers For Optoelectronic Applications

Kaya Deniz, Tugba 01 September 2012 (has links) (PDF)
The synthesis and optoelectronic properties of biphenyl based conjugated copolymers with varying acceptor units in the polymer backbone were investigated. The well known Donor-Acceptor Theory was used to establish the synthetic pathway for the structural modifications. Solubility issues regarding biphenyl polymer was solved by copolymerizing with soluble units. For this purpose / poly 4-(biphenyl-4-yl)- 4&rsquo / -tert butylspiro[benzo[d]imidazole-2,1&rsquo / -cyclohexane] (P1), poly 4-(biphenyl-4-yl)- 2- dodecyl-2H-benzo[d][1,2,3]triazole (P2) and poly(4-(5-(biphenyl-4-yl)-4-hexylthiophen- 2-yl)-2-dodecyl-7-(4-hexylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole (P3) were synthetized using Suzuki coupling process. Electrochemical properties of these polymers were examined by cyclic voltammetry, spectroelectrochemistry and kinetic studies. Polymers P2 and P3 showed both p- and n-doping behaviors and multicolored electrochromic states. Optical studies revealed that emission color of biphenyl is tuned from blue to orange and the polymers are good candidates for light emitting diode applications. OLED application of P3 was established and outputs of the device were increased by energy transfer studies. The preliminary investigation indicated that P3 possesses promising efficiencies.
156

Tensegrity-inspired nanocomposite structures

Lee, Ji Hoon 28 June 2012 (has links)
The main goal of this research is to construct hierarchical microstructures from polymer nanocomposites. Specifically, the research focused on constructing tensegrity-inspired microstructure where the nanoparticles are the compression members and the polymer matrix is tensile web. In order to achieve the tensegrity-inpired microstruture, the research was conducted with the following objectives. 1. Synthesis of Hydroxyapatite (HAp) nanoparticles of controlled shapes using block copolymer templates. 2. Investigation of the effects of particle loadings and shapes on isotropic nanocomposite properties. 3. Construction of HAp building blocks into the tensegrity-inspired microstructures First, in order to use the nanoparticles for this structure, needle-shaped HAp nanoparticles were synthesized using block copolymer templates. The results indicated that significant amount of polymer remained on particle surface. Since these particles were coated with polymer blocks, the decorated polymer blocks were considered as the interphase material which would be used to prestress the HAp nanoparticles, and the particles would be acted as the building blocks for constructing tensegrity-inspired microstructure. For nanocomposites, polymer coating on HAp nanoparticles promoted particle dispersion. The effect of particle shapes on thermomechanical properties did not show significant differences between the two particle systems due to their low aspect ratios and chemical similarity. However, the polymer crystallinity and crystallization showed different trend as a function of particle loadings in two particle systems, and the behavior was unified through a common particle spacing of approximately 120 nm. In order to investigate the effect of particle arrangement in the polymer matrix, needle-shaped HAp nanoparticles synthesized with two different block copolymers were mixed with different morphology of polymer matrices and manipulated particle arrangement using the drawing process. Nanocomposites prepared with different matrix morphologies showed the similar dispersion characteristics and reinforcement behavior. The experimental results showed the drawing process influenced the particle arrangement in the polymer matrix, and the particle arrangement and reinforcement behavior were influenced by polymer matrix morphology. The thermomechanical properties of both matrix systems enhanced through the drawing process in the glassy region, but the effect of degree of particle orientation was difficult to distinguish due to low aspect ratios of HAp particles which was not enough to impact on overall microstructure.
157

Kinetic Investigation and Modelling of Multi-Component Polymer Systems with Depropagation

Leamen, Michael January 2005 (has links)
The phenomenon of depropagation or reverse polymerization for multicomponent polymerizations has been studied in detail. The monomer Alpha-Methyl Styrene (AMS) has been copolymerized with Methyl Methacrylate (MMA) and Butyl Acrylate (BA) at temperatures ranging from 60oC to 140oC and the kinetics have been studied in the form of propagation/cross propagation and depropagation parameters. There have been multiple attempts with varying amounts of success in the past to determine the kinetic parameters for depropagating systems including work by Lowry and Wittmer as well as other modelling methodologies that are not as mechanistic. The most recent development of the mechanistic terminal model is that of the Kruger model. The model is robust and can take into account all special cases as well as all reactions being reversible. The kinetic parameters have been estimated for each of the three binary systems using the Kruger model (MMA/AMS, MMA/BA, BA/AMS). The Alfrey-Goldfinger model is inadequate to describe depropagating terpolymer systems and in order to study them, a new model was developed based upon the binary Kruger model. This new model takes into account a fully depropagating terpolymer system leading to a total of 15 parameters to be estimated. These 15 parameters have the same definitions as those estimated from the binary Kruger model, thus making accurate analysis of the binary systems crucial since these will be used as first estimates for the terpolymer system. Extensive experimental data (composition, conversion and molecular weights) was collected and analysed for the MMA/AMS and BA/AMS systems. For the BA/AMS system both the bulk and solution copolymerizations were studied in detail with the results from the Kruger model not showing a significant difference in the reactivity ratios between the two types of polymerization. For the MMA/AMS system, a bulk study only was done which revealed an interesting phenomenon that points toward a break down of the long chain approximations used for all of the models being studied. For both of these systems, extensive <sup>1</sup>H NMR analysis was done to determine the copolymer composition. Data collected in previous research for the MMA/BA system was reanalysed using the Kruger model and it was found that the parameter estimates did not differ significantly from the published values. Extensive benchmarking was done with the newly developed terpolymer model on non-depropagating systems using data from the literature to ensure it worked for the simplest cases. It was found that the model matched the parameter estimates from the literature and in some cases improving upon them to fit the data better. Along with the benchmarking a sensitivity analysis was done which revealed some interesting information. For the MMA/BA/AMS terpolymer system a set of experiments (based upon practical considerations) were performed and the composition of the polymer was determined using <sup>13</sup>C NMR instead of the usual <sup>1</sup>H NMR due to the difficulty of peak separation for the complex terpolymer. Using the depropagating terpolymer composition data in conjunction with the parameter estimates from the three binary systems allowed for estimation of the 15 kinetic parameters, which showed only minor variation from the binary estimates.
158

Synthesis, Characterization and Modeling of Porous Copolymer Particles

Fang, Dongyu January 2007 (has links)
Hydrogels are polymeric materials that have three-dimensional polymeric networks, which are able to absorb and retain a large amount of water within their structures without being dissolved. Among the synthetic hydrogel, poly(2-hydroxylethyl methacrylate) (poly(HEMA)) has been of great interest because of its excellent biocompatibility with the three-dimensional networks. Therefore, poly(HEMA) hydrogels have been widely used in many areas, especially in biomedical and pharmaceutical areas, for such applications as packing materials in chromatography, sorbents in controlled release and drug delivery, implanting materials in tissue engineering. However, the applications of poly(HEMA) are still limited because of its weak mechanical strength and network properties. Therefore, in recent decades, the challenge of how to modify and control the polymer properties and how to build highly porous structures in it has received considerable attention because these modifications could significantly improve the performance of poly(HEMA) hydrogels for more favorable applications. Although HEMA and its polymers have been studied for more than 40 years, few reports about the preparation of micro-/nano-porous poly(HEMA) hydrogel particles and the requirements of their applications have risen. Furthermore, how to control the porous structures and the properties of HEMA copolymers have not been well understood. Accordingly, the objectives of this research were to investigate the synthesis of the porous copolymeric particles of HEMA with various comonomers (MMA, St and NVP), to characterize the porous structures and particle morphology, to simulate the synthesis process and porous characteristics, to explore the effects of the polymer compositions and the porous structures on the swelling properties, and to apply the resultant polymeric particles in the controlled release of the hydrophilic model drug. In the present studies, HEMA was copolymerized with three different comonomers, methyl methacrylate (MMA), styrene (St) and N-vinyl-2-pyrrolidone (NVP), respectively, to prepare highly porous particles crosslinked using ethylene glycol dimethacrylate (EGDMA) in the presence of 1-octanol used as a porogen by means of suspension copolymerization in an aqueous phase initiated by 2,2-azobisisobutyronitrile (AIBN). Nano-pores were observed in the present studies. The pore size and the swelling properties of these particles can be successfully controlled by changing comonomers or adjusting the crosslinker and porogen concentration. The results indicate that lower crosslinker or porogen concentration favors generating smaller pores, whereas a higher concentration of a hydrophilic comonomer, higher crosslinker concentration and higher porogen volume ratio promote the generation of larger pores. In addition, the effects of the porous structures and the network properties on the swelling properties were explored. The swelling capacity of the porous particles is reduced with an increase in the EGDMA molar concentration. However, higher porosity in the particles and higher amount of hydrophilic comonomer result in a higher swelling capacity of the particles. The gel formation and the porous characteristics of HEMA/comonomer/EGDMA systems were simulated using the mathematical models combining the reaction kinetics and the thermodynamics. It was found that the model over-predicted the experimental results of the porosity because the pores and the networks are shrunk or collapsed during the porogen removal. Therefore, the model predicts the maximum porosity that the polymeric particles can reach. If the hydrophobic contents are higher, the model gives better prediction of the porosity. It is concluded that the microporous structures of HEMA related hydrogels could be controlled by a properly designed process based on the knowledge gained via this research. The output of this research helps with a better understanding for industrial production of micro-porous hydrogels and their applications.
159

Kinetic Investigation and Modelling of Multi-Component Polymer Systems with Depropagation

Leamen, Michael January 2005 (has links)
The phenomenon of depropagation or reverse polymerization for multicomponent polymerizations has been studied in detail. The monomer Alpha-Methyl Styrene (AMS) has been copolymerized with Methyl Methacrylate (MMA) and Butyl Acrylate (BA) at temperatures ranging from 60oC to 140oC and the kinetics have been studied in the form of propagation/cross propagation and depropagation parameters. There have been multiple attempts with varying amounts of success in the past to determine the kinetic parameters for depropagating systems including work by Lowry and Wittmer as well as other modelling methodologies that are not as mechanistic. The most recent development of the mechanistic terminal model is that of the Kruger model. The model is robust and can take into account all special cases as well as all reactions being reversible. The kinetic parameters have been estimated for each of the three binary systems using the Kruger model (MMA/AMS, MMA/BA, BA/AMS). The Alfrey-Goldfinger model is inadequate to describe depropagating terpolymer systems and in order to study them, a new model was developed based upon the binary Kruger model. This new model takes into account a fully depropagating terpolymer system leading to a total of 15 parameters to be estimated. These 15 parameters have the same definitions as those estimated from the binary Kruger model, thus making accurate analysis of the binary systems crucial since these will be used as first estimates for the terpolymer system. Extensive experimental data (composition, conversion and molecular weights) was collected and analysed for the MMA/AMS and BA/AMS systems. For the BA/AMS system both the bulk and solution copolymerizations were studied in detail with the results from the Kruger model not showing a significant difference in the reactivity ratios between the two types of polymerization. For the MMA/AMS system, a bulk study only was done which revealed an interesting phenomenon that points toward a break down of the long chain approximations used for all of the models being studied. For both of these systems, extensive <sup>1</sup>H NMR analysis was done to determine the copolymer composition. Data collected in previous research for the MMA/BA system was reanalysed using the Kruger model and it was found that the parameter estimates did not differ significantly from the published values. Extensive benchmarking was done with the newly developed terpolymer model on non-depropagating systems using data from the literature to ensure it worked for the simplest cases. It was found that the model matched the parameter estimates from the literature and in some cases improving upon them to fit the data better. Along with the benchmarking a sensitivity analysis was done which revealed some interesting information. For the MMA/BA/AMS terpolymer system a set of experiments (based upon practical considerations) were performed and the composition of the polymer was determined using <sup>13</sup>C NMR instead of the usual <sup>1</sup>H NMR due to the difficulty of peak separation for the complex terpolymer. Using the depropagating terpolymer composition data in conjunction with the parameter estimates from the three binary systems allowed for estimation of the 15 kinetic parameters, which showed only minor variation from the binary estimates.
160

Synthesis, Characterization and Modeling of Porous Copolymer Particles

Fang, Dongyu January 2007 (has links)
Hydrogels are polymeric materials that have three-dimensional polymeric networks, which are able to absorb and retain a large amount of water within their structures without being dissolved. Among the synthetic hydrogel, poly(2-hydroxylethyl methacrylate) (poly(HEMA)) has been of great interest because of its excellent biocompatibility with the three-dimensional networks. Therefore, poly(HEMA) hydrogels have been widely used in many areas, especially in biomedical and pharmaceutical areas, for such applications as packing materials in chromatography, sorbents in controlled release and drug delivery, implanting materials in tissue engineering. However, the applications of poly(HEMA) are still limited because of its weak mechanical strength and network properties. Therefore, in recent decades, the challenge of how to modify and control the polymer properties and how to build highly porous structures in it has received considerable attention because these modifications could significantly improve the performance of poly(HEMA) hydrogels for more favorable applications. Although HEMA and its polymers have been studied for more than 40 years, few reports about the preparation of micro-/nano-porous poly(HEMA) hydrogel particles and the requirements of their applications have risen. Furthermore, how to control the porous structures and the properties of HEMA copolymers have not been well understood. Accordingly, the objectives of this research were to investigate the synthesis of the porous copolymeric particles of HEMA with various comonomers (MMA, St and NVP), to characterize the porous structures and particle morphology, to simulate the synthesis process and porous characteristics, to explore the effects of the polymer compositions and the porous structures on the swelling properties, and to apply the resultant polymeric particles in the controlled release of the hydrophilic model drug. In the present studies, HEMA was copolymerized with three different comonomers, methyl methacrylate (MMA), styrene (St) and N-vinyl-2-pyrrolidone (NVP), respectively, to prepare highly porous particles crosslinked using ethylene glycol dimethacrylate (EGDMA) in the presence of 1-octanol used as a porogen by means of suspension copolymerization in an aqueous phase initiated by 2,2-azobisisobutyronitrile (AIBN). Nano-pores were observed in the present studies. The pore size and the swelling properties of these particles can be successfully controlled by changing comonomers or adjusting the crosslinker and porogen concentration. The results indicate that lower crosslinker or porogen concentration favors generating smaller pores, whereas a higher concentration of a hydrophilic comonomer, higher crosslinker concentration and higher porogen volume ratio promote the generation of larger pores. In addition, the effects of the porous structures and the network properties on the swelling properties were explored. The swelling capacity of the porous particles is reduced with an increase in the EGDMA molar concentration. However, higher porosity in the particles and higher amount of hydrophilic comonomer result in a higher swelling capacity of the particles. The gel formation and the porous characteristics of HEMA/comonomer/EGDMA systems were simulated using the mathematical models combining the reaction kinetics and the thermodynamics. It was found that the model over-predicted the experimental results of the porosity because the pores and the networks are shrunk or collapsed during the porogen removal. Therefore, the model predicts the maximum porosity that the polymeric particles can reach. If the hydrophobic contents are higher, the model gives better prediction of the porosity. It is concluded that the microporous structures of HEMA related hydrogels could be controlled by a properly designed process based on the knowledge gained via this research. The output of this research helps with a better understanding for industrial production of micro-porous hydrogels and their applications.

Page generated in 0.0525 seconds