• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 244
  • 76
  • 61
  • 16
  • 11
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 516
  • 218
  • 125
  • 75
  • 75
  • 74
  • 67
  • 64
  • 62
  • 59
  • 47
  • 42
  • 40
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Analysis of the Kinetics of Filler Segregation in Granular Block copolymer Microstructure

Lee, Bongjoon 01 October 2016 (has links)
Block copolymers have attracted interests for potential application ranging from dynamic photonic sensors to solid-state ion conductors. However, due to nucleation and growth mechanism, block copolymer inherently forms granular microstructure with defects such as grain boundaries. Understanding the microstructure of block copolymer is thus crucial in many applications because the microstructure determines the transport property of functional fillers such as ions in block copolymer template. Previous research has shown that athermal filler segregated to grain boundary of lamellae block copolymer and retards the grain coarsening. However, the kinetics of this grain boundary segregation during thermal annealing has not been revealed. Polystyrene-b-polyisoprene blended with deuterated polystyrene is used for neutron scattering study on studying the kinetics of grain boundary segregation. Deuterated polystyrene will segregate to grain boundaries, therefore, decorate grain boundary. The filler segregation behavior will be studied by comparing neutron scattering of polystyrene-b-polyisoprene/deuterated polystyrene with different annealing times (at T=130 deg C, duration of 0hr, 3hr, 1day, 3day and 7day, respectively). Invariant (Q) analysis along with grain mapping is conducted to quantitatively analyze the kinetics of grain boundary segregation. This kinetic was in good agreement with the McLean’s kinetic model for grain boundary segregation in metals. By applying Langmuir-Mclean’s segregation isotherm equation, we have predicted the equilibrium concentration of filler in grain boundary by calculating the strain energy stored in grain boundary.
52

NOVEL SOFT SURFACES WITH INTERESTING SURFACE AND BULK MORPHOLOGY

Chakrabarty, Souvik 29 June 2012 (has links)
The goal of this research is to cover a broad set of scientific investigations of elastomeric materials based on polydimethylsiloxane (PDMS) and poly((3,3,3-trifluoroethoxymethyl)methyloxetane) diol. The scope of study covers five areas, well correlated with each other. The first study investigates the near surface morphology of condensation cured PDMS as a function of increasing the amount of siliceous phase. The appearance, disappearance and reappearance of untreated fumed silica nanoparticles at the PDMS near surface and their correlation with the volume fraction of siliceous phase have been studied. This research with PDMS nanocomposites has led to the development of an alternative route for improving mechanical strength of PDMS elastomers, conventionally known to have weak mechanical properties. The second study involves synthesis of a triblock copolymer comprising of four mutually immiscible phases, namely, soft segments comprising of fluorous and silicone domains, a diisocyanate hard segment and a glassy siliceous phase. Structure-property relationship has been established with an investigation of the interesting surface and bulk morphology. The highly improved mechanical strength of these soft materials is noteworthy. The dominance of silicone soft block at the triblock near surface has led to the third study which investigates their potential non-adhesive or abhesive characteristic in both a laboratory scale and in a marine environment. The peak removal stress and the removal energy associated with the detachment of a rigid object from the surface of these triblock copolymers have been measured. Results obtained from laboratory scale experiments have been verified by static immersion tests performed in the marine environment, involving the removal of adhered soft and hard fouling organisms. Gaining insights on the characteristics of an easy release surface, namely low surface energy and a low near surface modulus, a new way for controlling the near surface composition for elastomeric coatings have been developed. This technique involves an elastomer end-capped with a siliceous crosslinking agent and a tough, linear polyurethane. The basic concept behind the hybrid compositions is to develop a coating suitable for foul release applications, having a low energy surface, low surface modulus but good bulk mechanical strength. Henceforth, the fourth study deals with synthesis and characterization of the hybrid polymers over a wide range of composition and investigates their foul release characteristic in laborartory scale experiments. In our final study, attempts have been made in generating a silicone coating with antimicrobial property. A quaternary alkylammonium in different weight percents have been incorporated into a conventional, condensation cured polydimethylsiloxane (PDMS) elastomer. Antimicrobial assay has been performed on these modified silicone coatings to assess their biocidal activity against strains of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Surface accessibility of quaternary charges has been quantified by measuring the streaming potential of a modified coating. An effort has been made in improving the mechanical strength of the weak PDMS elastomers by adding treated fumed silica nanoparticles as reinforcements. The effect of adding fillers on the mechanical property (tensile), surface concentration of quaternary charge and on the biocidal activity of a representative sample has been investigated.
53

Desenvolvimento de nanocápsulas funcionalizadas com o tripeptídeo LDV para a vetorização ativa de um agente antineoplásico visando o tratamento de câncer

Franco, Camila, Tebaldi, Marli Luiza, Guterres, Silvia Stanisçuaski, Buffon, Andreia January 2015 (has links)
O objetivo do presente estudo visa o desenvolvimento de um copolímero em bloco constituído por metacrilato de metila (MMA) e de dimetilaminoetila (DMAEMA), tendo como macroniciador poli--caprolactona dibromada (Br-PCL-Br), e que permite formar nanocápsulas sensíveis ao pH, contendo ou não o tripeptídeo leucina-ácido aspártico-valina (LDV) na superfície para a vetorização ativa de anti-neoplásicos. Os métodos envolveram diferentes abordagens sintéticas testadas, sendo que a técnica de transferência eletrônica por regeneração de ativadores (ATRP-ARGET) permitiu obter o copolímero PCL-P(MMA-DMAEMA)2 de forma mais prática e com rendimentos entre 30 e 70%. Por fim, o tripeptídeo LDV foi conjugado ao copolímero por meio do ligante metacrilato de 2-isocianato de etila (IEM). Um método por cromatografia líquida de alta eficiência (CLAE) foi adaptado para a quantificação da doxorrubicina e as nanopartículas foram preparadas por nanoprecipitação e avaliadas quanto à capacidade de expandir em diferentes pHs e citotoxicidade em células de câncer de mama. Os resultados do copolímero demonstram, por análises de infravermelho (IR-FT), sinais característicos em 2900 cm-1 e 1720 cm-1 correspondentes às funções –CH e –C=O. A análise de ressonância magnética nuclear de hidrogênio (RMN 1H) mostra a caracterização das cadeias hidrocarbônicas do copolímero, sendo que os deslocamentos químicos em 2,8 ppm e 3,8 ppm correspondem aos sinais dos grupamentos –CH2-N do DMAEMA e -OCH3 do MMA. As nanocápsulas preparadas a partir do copolímero expandiram de diâmetro quando expostas à pH ácido. Uma vez que o PMMA foi identificado como componente mais citotóxico, o copolímero foi otimizado por meio da redução da quantia de MMA. A quantificação da doxorrubicina encapsulada nas nanopartículas preparadas a partir dos copolímeros não otimizado (ARGET-A) e otimizado (ARGETB) foi de 61,42% e 64,88%, respectivamente. No estudo de citotoxicidade, as nanopartículas preparadas a partir do copolímero ARGET-B apresentaram-se eficazes no controle da proliferação celular de MCF-7. Conclui-se que o método de síntese ATRP-ARGET-B foi o mais apropriado para a produção do copolímero empregado no desenvolvimento de nanopartículas pH responsivas eficazes no 6 controle da proliferação de células tumorais. Ainda, existe a possibilidade do emprego do copolímero contendo o tripeptídeo LDV para alcançar uma vetorização ativa em células de câncer por meio da interação com integrinas específicas. Entretanto, até o presente, não foi realizada a avaliação das nanopartículas contendo LDV. / The objective of the present study looks for the development of a block copolymer constituted by methyl methacrylate (MMA) and dimethylaminoethyl methacrylate (DMAEMA), having poly--caprolactone dibromated (Br-PCL-Br) as a macroinitiator and, that could form pH sensible nanocapsules with or without the tripeptide leucineaspartic acid-valine (LDV) in its surface for active vectorization of anti-neoplasics. The methods employed different synthetic approaches tested, being that the activator regenerated by eletron transfer technique (ATRP-ARGET) allowed to obtain the copolymer PCL-P(MMA-DMAEMA)2 in a practicle way and with incomes between 30 and 70%. Finally, the tripeptide LDV was linked to the copolymer through the 2- isocyanatoethyl methacrylate (IEM). A high performance liquid chromatography method (HPLC) was adapted to doxorubicin quantification and, the nanopartircles were prepared by nanoprecipitation and evaluated conserning its ability to expand in different environments and citotoxycity in mammary cancer cells. The results from the copolymer demonstrated, by infrared (FT-IR), characteristic signals of 2900 cm-1 and 1720 cm-1 from the functions –CH and –C=O. And hydrogen nuclear magnetic resonance (RMN 1H) analysis allowed the characterization of the hydrogen-carbonic chains of the copolymer, being that the chemical displacement in 2,8 ppm and 3,8 ppm corresponds to the signals of the groups –CH2-N from DMAEMA and –O-CH3 from MMA. The nanocapsules prepared from the copolymer expanded its diameter when exposed to acidic pH. Once PMMA was identified as the most toxic component the copolymer was optimized by the reduction of MMA amount. Doxorubicin quantification in the nanocapsules prepared with the copolymers not optimized (ARGET-A) and optimized (ARGET-B) was 61,42% and 64,88%, respectively. In the cytotoxicity study, the nanocapsules prepared from copolymer ARGET-B showed to be efficient to control the cellular proliferation of MCF-7. It can be concluded that the ATRP-ARGET-B method was the more appropriate one for the copolymer production, which was employed in nanocapsules pH responsive effective to control 8 tumor proliferation. Besides, there is the possibility to use the copolymer functionalized with LDV to achieve an active delivery to cancer cells by it interaction with specific integrins. However, till the present, it was not realized the evaluation of the nanocapsules with LDV.
54

Self-assembled smart filtration membranes from block copolymers and inorganic nanoparticles / Membranes intelligentes de filtration à partir d'auto-assemblages de copolymères à blocs et de nanoparticules inorganiques

Upadhyaya, Lakshmeesha 04 November 2016 (has links)
Ce travail de thèse propose une nouvelle approche pour la préparation de membranes à matrice mixte basée sur l’utilisation de copolymères à blocs et de nanoparticules inorganiques disposant de propriétés magnétiques. Des aggrégats de copolymères ont été préparés avec une morphologie variée (sphères, cylindres et vésicules) à partir du copolymère poly(acide méthacrylique)-b-poly(méthacrylate de méthyle). Ce dernier a été synthétisé par polymérisation radicalaire contrôlée par transfert de chaîne réversible par addition-fragmentation (RAFT) dans l’éthanol à 70°C. Des particules d’oxyde de fer ont, quant à elles, été préparées en présence de différents stabilisants à température variée pour permettre d’atteindre la charge de surface et les propriétés magnétiques recherchées. La structure des copolymères à bloc a permis d’obtenir à la fois des membranes hydrophobes via le procédé de séparation de phase induite par un non-solvant, ainsi que des membranes hydrophiles lorsque que la technique de spin-coating était appliquée aux aggrégats formés par auto-assemblage induit lors de la polymérisation. Grâce à l’étude détaillée des propriétés de filtration des membranes obtenues, la relation structure-propriété a été discutée sous l’action d’un champ magnétique externe. Enfin, la sensibilité au colmatage a été vérifiée via la filtration de solutions de protéines. Il a ainsi été démontré une diminution notable du colmatage sous champ magnétique, ouvrant de belles perspectives pour ces nouvelles membranes. / This thesis presents a new approach to produce mix matrix membranes using block copolymers and inorganic nanoparticles having magnetic properties. The polymeric nanoparticle with different morphologies (linear, Spheres, worms, and vesicles), from poly (methacrylic acid)-b-(methyl methacrylate) diblock copolymer, were synthesized using Reversible addition−fragmentation chain transfer polymerization (RAFT) in ethanol at 70 ֠C. The inorganic counterpart, iron oxide nanoparticles were prepared using different stabilizers at various temperatures to acquire the necessary surface charge and magnetic properties. The chemistry of the particles leads to form both hydrophobic membranes using non-solvent induced phase separation as well as a hydrophilic membrane by using the simple spin coating technique with the particles from polymerization induced self-assembly. By a detailed experimental study of the membrane filtration, the influence of different parameters on the process performance has been investigated with and without magnetic field. Finally, membrane fouling has been studied using protein solution. Also, the membrane performance was examined under magnetic field revealing the successful reduction in the fouling phenomenon making them new performant membranes in the area of membrane technology.
55

Étude des mécanismes d’auto-adhésion entre élastomère et matériau composite : Impact des paramètres de formulation et de mise en oeuvre des élastomères et du composite sur les caractéristiques de l’assemblage / Study of self-adhesion mechanisms between elastomer and composite materials

Granat, Cécile 26 April 2018 (has links)
Dans de nombreux domaines, tels que l’aéronautique et l’aérospatial, les matériaux composites sont utilisés par soucis d’allègement des structures. Pour cette même raison, les assemblages mettant en jeu ces matériaux sont préférentiellement réalisés par collage. Ce mode d’assemblage présente aussi l’avantage d’éviter tout risque d’endommagement engendré par des ruptures de fibres. Néanmoins, chacune des opérations de mise en œuvre du collage doit être maîtrisée, en particulier lorsque des élastomères réticulés, réputés peu aptes au collage, sont impliqués. Ainsi, un primaire est généralement utilisé pour assurer l’adhésion entre l’élastomère et le matériau composite. Dans ce travail de thèse, il s’agit de supprimer l'étape d’enduction du primaire à la surface de l’élastomère réticulé avant bobinage des fibres imprégnées de résine. Cette suppression vise à réduire les risques Hygiène Sécurité Environnement (primaire classé Cancérigène, Mutagène et Reprotoxique) et permet de simplifier les cycles de fabrication. Pour assurer l’adhésion entre l’élastomère réticulé à base d’EPDM et le matériau composite à matrice époxyde sans élément intermédiaire, il est essentiel de comprendre les mécanismes de formation de l’assemblage : création de liaisons physiques, influence de la rugosité de surface, diffusion de monomères et réactions chimiques. Cette compréhension permet par la suite de modifier la formulation des matériaux, dans notre cas remplacer le copolymère présent dans l’élastomère, afin d’améliorer l’adhésion et de s’affranchir de tout traitement de surface. / In many fields, in particular in aeronautic and aerospace, assemblies by bonding instead of bolting are used in order to lighten structures involving composite materials. Furthermore chemical bonding minimizes the risk of damage by fibers breaking. In this context, our research work concerns the assembly between a cured elastomer, known to be difficult to be bonded, and a composite material without using adhesives which are classified as carcinogenic, mutagenic and toxic agent. In order to have a good adhesion between cured EPDM elastomer and composite material with epoxy resin without adhesive, it is crucial to understand mechanisms of self assembly of these materials: role of physical bonds, influence of roughness, monomers diffusion and chemical reactions. This good understanding allows us editing material formulations, in our case copolymer in elastomer, to improve adhesion and remove surface treatment.
56

SUPRAMOLECULAR ENGINEERING OF VESICLES VIA SELF-ASSEMBLY: APPLICATION TO DRUG DELIVERY

Collette, Floraine 12 August 2005 (has links) (PDF)
Sixteen millions of people are diabetics in the United States. Finding an oral way to deliver the insulin they need would improve the quality of their life. For this purpose biodegradable and biocompatible nanovesicles encapsulating some insulin have been synthesized. Those nanovesicles are made by self-assembly of a triblock copolymer poly(ethylene glycol)-bpoly( lactic acid)-b-poly(glutamic acid) (PEG-b-PLA-b-PGlu). The triblock copolymer has been prepared in several steps by multi-step anionic ringopening polymerization. The first step consisted in the preparation of the diblock copolymer PEG-b-PLA. This diblock copolymer was synthesized by ring opening of racemic lactide, using a zinc alkoxide as an initiator. The second step was the synthesis of the poly(glutamic acid). The polybenzyl(glutamic acid) was obtained by ring opening polymerization of the N-Carboxyanhydride of the corresponding amino acid. Finally, the benzyl group was deprotected via protonolysis, to generate the homopolymer. This triblock was successfully obtained by coupling a diblock copolymer PEG-bxv PLA and a homopolymer poly(glutamic acid). In the presence of an aqueous solution of insulin where the pH is between 7 and 9, the triblock copolymer self-assembles in nanovesicles containing a part of the free insulin. In the intestine, the vesicles are highly solvated due to the deprotonnated poly(glutamic acid) hair which are expected to be located on the outside. Moreover, to resist from the gastric acidity, the nanovesicles are protected with gastro resistant polymer, Eudragit, which stay solid at acidic pH but get dissolved in the intestine (where the pH is slightly basic), releasing the vesicles. All the polymers have been characterized using 1H NMR and GPC. The percentage of encapsulation of insulin has been measured by HPLC some in-vivo experiments have been done on Sprague-Dawley rats.
57

Rheological and Thermodynamic Properties of PEO-PPE-PEO and PAA-g-PEO-PPO-PEO System

Tian, Y., Dai, S., Tam, Michael K. C., Bromberg, Lev, Hatton, T. Alan 01 1900 (has links)
Rheological and thermodynamic properties of Pluronic F127 copolymer and Pluronic-g-PAA have been studied as a function of temperature and concentration. A combination of rheometry and DSC was employed to examine the gelation behavior of F127 and F127-g-PAA. The viscosity of F127 is extremely sensitive to temperature when the polymer concentration exceeds 10 wt%. But significant increase of viscosity has been observed for 1.0 wt%F127-PAA aqueous solution as a function of temperature. This could be due to the PAA grafts, acting as cross-links attached to the F127 backbone. / Singapore-MIT Alliance (SMA)
58

Design of macromolecular drug delivery systems using molecular dynamics simulation

Patel, Sarthakkumar 06 1900 (has links)
In recent years, the use of self-associating block copolymer based drug delivery systems have attracted increasing attention as nanoscopic carriers for the encapsulation and the controlled delivery of water insoluble drugs. Currently, most of the drug formulations proceed by trial and error method with no distinct method to predict the right combination of block copolymers and drugs to give all the desired functional properties. This is simply because such drug delivery systems involve complex intermolecular interactions and geometric fitting of molecules of different shapes. So, in the context of block copolymer design process, quantification and prediction of the interactions between potential block copolymers and the target drug are of great importance. Computer simulations that can predict the level and type of interactions encountered in drug/block copolymer pairs will enable researchers to make educated decisions on choosing a particular polymeric carrier for a given drug, avoiding time consuming and expensive trial and error based formulation experiments. In the present thesis, we reported the use of molecular dynamics (MD) simulation to predict the solubility of sets of hydrophobic drug molecules having different spatial distribution of hydrogen bond forming moieties in a series of micelle-forming PEO-b-PCL block copolymers with and without functionalized PCL blocks. The solubility predictions based on the MD results were then compared with those obtained from the solubility experiments and those obtained by the commonly used group contribution method (GCM). MD analysis techniques like radial distribution functions provided useful atomistic details to understand the molecular origin of miscibility and/or immiscibility observed between drugs and di-block copolymers. Based on the evidence of reported work, intermolecular specific interactions, intra-molecular interactions, local molecular packing, and stereochemistry of the hydrophobic block all play important roles in inducing miscibility between drugs and block copolymers. Additionally, not only the architecture of block copolymers but also the molecular characteristics of drug molecules, e.g., spatial distributions of hydrogen bond donors and acceptors on their molecules can affect the miscibility characteristics of binary mixtures. Depending on the groups present on drugs and block copolymers, any of the above factors can play vital role in the process of favouring encapsulation. The understanding of relative contributions of these interactions can help us to customize the performance of drug carriers by engineering the structure of block copolymers. / Chemical Engineering
59

Development of catalytic stamp lithography for nanoscale patterning of organic monolayers

Mizuno, Hidenori 06 1900 (has links)
Nanoscale patterning of organic molecules has received considerable attention in current nanoscience for a broad range of technological applications. In order to provide a viable approach, this thesis describes catalytic stamp lithography, a novel soft-lithographic process that can easily produce sub-100 nm patterns of organic monolayers on surfaces. Catalytic stamps were fabricated through a two-step procedure in which the nanoscale patterns of transition metal catalysts are first produced on SiOx/Si surfaces via the use of self-assembled block-copolymers, followed by the production of the poly(dimethylsiloxane) (PDMS) stamps on top of the as-patterned metals. Simply peeling off the as-formed PDMS stamps removes the metallic nanostructures, leading to the functional stamps. A number of different patterns with various metals were produced from a commercially available family of block copolymers, polystyrene-block-poly-2-vinylpyridine, by controlling the morphology of thin-film templates through the modulation of molecular weights of polymer blocks or solvent vapor annealing. Using these catalytic stamps, hydrosilylation-based catalytic stamp lithography was first demonstrated. When terminal alkenes, alkynes, or aldehydes were utilized as molecular inks, the metallic (Pt or Pd) nanopatterns on catalytic stamps were translated into corresponding molecular arrays on H-terminated Si(111) or Si(100) surfaces. Since localized catalytic hydrosilylations took place exclusively underneath the patterned metallic nanostructures, the pattern formations were not affected by ink diffusion and stamp deformation even at the sub-20 nm scale, while maintaining the advantages of the stamp-based patterning (i.e., large-area, high-throughput capabilities, and low-cost). The concept of catalytic stamp lithography was further extended with other catalytic reactions, and successful nanoscale patterning was performed using hydrogenation (on azide-terminated SiOx surfaces) and the Heck reaction (on alkene- or bromphenyl-terminated SiOx surfaces). A range of nanopatterned surfaces with different chemical functionalities, including thiol, amine, and acid, were created, and they were further modified through appropriate chemical reactions. The potential utility of this simple approach for the construction of a higher degree of nanoarchitectures was suggested.
60

Metallo-supramolecular block copolymers : from synthesis to smart nanomaterials

Guillet, Pierre 08 July 2008 (has links)
Supramolecular copolymers have become of increasing interest in recent years for the search of new materials with tunable properties. In particular, metallo-supramolecular block copolymers have seen important progresses since the last five years. In this thesis, a library of metallo-supramolecular amphiphilic block copolymers containing a hydrophilic block, linked to a hydrophobic block, through a metal-ligand complex has been investigated. The micelles formed in water from these copolymers were characterized by AFM and TEM and exhibited a different behavior compared to their covalent counterpart. Furthermore, a novel strategy to control the formation of amphiphilic brushes from metallo-supramolecular block copolymers has been developed. Starting from a heteroleptic block copolymer, the initial low molecular weight counterions were exchanged for polymeric ones, leading to the formation of complex architectures. Another part of this thesis is dedicated to the use of metal-ligand interactions located at the extremity of micelles. Since ligands are located at the extremity of the coronal chains, they are available for complexation with metal ions. The effect of the addition of various metal ions to this system was studied in the dilute regime by dynamic light scattering, and different situations have been observed depending on the metal-to-ligand ratio and to the nature of the metal ions. In more concentrated solutions, a second hierarchical level is reached leading to the formation of a micellar gel, due to the formation of intermicellar bridges. Rheological measurements revealed that the characteristic behavior of those gels critically depends on the added metal ions. Finally, the self-assembly of a metallo-supramolecular block copolymer in thin films was investigated. Due to the presence of the charged complex at the junction of the two blocks, this copolymer could be considered as a triblock with a highly immiscible block that effects the orientation of the cylindrical microdomains and the lateral ordering.

Page generated in 0.0507 seconds