• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 16
  • 12
  • 9
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of New Biarylphosphane Coinage Metal Complexes for the Regioselective Synthesis of Fused Carbocycles

Levesque, Patrick Pierre 02 October 2012 (has links)
In the last century, no less than five nobel prizes have been awarded for the construction of carbon-carbon bonds : The Grignard reaction (1912), the Diels-Alder reaction (1950), the Wittig reaction (1979), Olefin metathesis (2005) and palladium cross-coupling reactions (2011). The latter two are transition metal catalyzed transformations and their impact on the synthesis of pharmaceutically active compounds, bulk chemicals, fine chemicals, high tech materials as well as agricultural chemicals has been phenomenal. These reactions have changed the way the scientific community views the science of synthesis. Unlike palladium, gold has long been considered to be an expensive and inert metal and therefore, research on Au catalysis was scarse until the begining of the new millenium. Once the scientific community realized the treasure trove of reactivity that gold had to offer, the number of chemical transformations as well as total syntheses involving Au(I)/Au(III) catalysis has sky rocketed. A methodology initially developped by Toste and coworkers has shown that intramolecular addition of a silyl enol ether on alkynes proceeds via a 5-exo¬-dig¬ process. In the first part of this thesis, we will discuss how the ancilary ligand on Au(I) species can influence pathway selectivity for these cyclizations, therefore opening the door to selective 6-endo-dig cyclizations to generate fused carbocycles. With biological processes as well as other competing processes becoming ever more efficient, the future of chemical synthesis is threatened. If it is to survive, the focus of new chemical transformations will have to be on the cost and the greeness of the process. In the second part of this thesis, we will demonstrate how Ag(I) and Cu(I) complexes can offer even better 6-endo-dig¬ selectivity than analogous Au(I) complexes. Silver is about 56 times less expensive than gold, and copper is about 453 times less expensive than gold. Due to the greatly increased selectivity as well as the diminished cost of the catalysts, we have provided access to an attractive 6-endo-dig¬ cyclization process.
12

Synthesis of functionalized allylic, propargylic and allenylic compounds : Selective formation of C–B, C–C, C–CF3 and C-Si bonds

Zhao, Tony January 2015 (has links)
This thesis is focused on the development of new palladium and copper- mediated reactions for functionalization of alkenes and propargylic alcohol derivatives. The synthetic utility of the 1,2-diborylated butadienes synthesized in one of these processes has also been demonstrated. We have developed an efficient procedure for the synthesis of allenyl boronates from propargylic carbonates and acetates. This was achieved by using a bimetallic system of palladium and copper or silver as co-catalyst. The reactions were performed under mild conditions for the synthesis of a variety of allenyl boronates. Furthermore, the synthesis of 1,2-diborylated butadienes was achieved with high diastereoselectivity from propargylic epoxides. The reactivity of the 1,2-diborylated butadienes with aldehydes was studied. It was found that the initial allylboration reaction proceeds via an allenylboronate intermediate. The allenylboronate reacts readily with an additional aldehyde to construct 2-ethynylbutane-1,4-diols with moderate to high diastereoselectivity. We have also studied the copper-mediated trifluoromethylation of propargylic halides and trifluoroacetates. It was also shown that a transfer of chirality occurred when an enantioenriched starting material was used. In the last part of the thesis, we have described a method for palladium-catalyzed functionalization of allylic C-H bonds for the selective synthesis of allylic silanes. The protocol only works under highly oxidative conditions which suggest a mechanism involving high oxidation state palladium intermediates. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: Accepted.</p>
13

The synthesis and characterisation of azoporphyrins : the porphyrin analogues of azobenzene

Esdaile, Louisa Jane January 2007 (has links)
Due to the prevalence of porphyrins and their derivatives in Nature, there is a wide interest in the synthesis, design and exploitation of their properties. Their electron delocalisation, and the ease with which the electronic system can be perturbed and manipulated, have meant that porphyrins have been investigated for applications in many avenues. Conjugated, multiporphyrin oligomers have been studied as light-harvesting system mimics, molecular wires and sensors. It has been predicted that the azo-linkage should enable superior porphyrin-to-porphyrin interaction. Preparation of an azo-linked bis(porphyrin) was approached by reacting protected hydrazines with bromoporphyrins. A series of mono- and bis-substituted porphyrinoids including novel diiminoporphodimethenes was synthesised using palladium-catalysed reactions, and spectroscopic, structural and redox properties of these products were investigated. The manner in which a bis-substituted product evolved from a mono-activated starting material was studied. The synthesis of these products was refined to produce each product selectively. These products display interesting redox properties, and several of them exhibit greatly red-shifted absorption spectra. The palladium-catalysed synthesis of primary and secondary aminoporphyrins, as well as a hydroxyporphyrin, from the reaction of bromoporphyrins with unsubstituted hydrazine was discovered and investigated. The synthesis of these products was optimised to yield each novel porphyrinoid selectively. Some of the electronic and structural properties of these products were studied, and the unique bis(porphyrin)secondary amine exhibited excitonic coupling between the macrocycles. A porphyrin dyad with an azo-linkage was isolated, and its synthesis was optimised, initially using palladium-catalysed homocoupling of aminoporphyrins, and then using copper catalysis. The synthesis of this "azoporphyrin" was optimised to obtain the desired dimers in high yields and the properties of these dimers were studied and contrasted with those of other conjugated porphyrin dimers. The absorption spectra exhibited greatly split Soret bands and intense, red-shifted Q-bands, while cyclic voltammetry showed a decrease in the HOMO-LUMO gap, indicative of extremely efficient porphyrin-porphyrin interaction. Two crystal structures of azoporphyrins were obtained, and the dihedral angle and the distance between the mean planes of the macrocycles were also significantly smaller than those found for the analogous (E)-ethene-linked dimers. A series of novel "head-to-tail" porphyrin dyads was also isolated and characterised, and these exhibited interesting spectral features, including very broad and red-shifted Q-bands and split Soret bands in their absorption spectra.
14

Transition metal-catalyzed alkoxylation and amination reactions involving propargyl or allyl derivatives / Réactions de alcoxylation et amination catalysée par des métaux de transition impliquant propargyl ou allyl dérivés

Diamante, Daria 13 January 2017 (has links)
Durant toute ma période de doctorat, passé en co-tutelle entre l'Università degli Studi dell'Insubria et l'UPMC de Paris, j'ai dirigé mes efforts vers l'étude de la formation des liaisons C-O et C-N par de nouvelles réactions catalysées par des métaux de transition.En poursuivant notre projet en cours sur les réactions d'amination et d'alcoxylation catalysées par des métaux de transition intra- et intermoléculaires impliquant la fonctionnalisation C-H, nous avons essayé de réaliser deux procédures d'alcoxylation intramoléculaire de liaisons multiples carbone-carbone pour obtenir des hétérocycles oxygénés et une amination allylique oxydante intermoléculaire pour réaliser des scaffolds azotés.Effectuées au niveau intramoléculaire, les réactions catalysées par des métaux de transition offrent une stratégie polyvalente pour obtenir des molécules cycliques, difficilement obtenues par des méthodes de synthèse conventionnelles et à partir de matériaux de départ facilement disponibles, et représentent l'une des méthodologies clés pour le progrès de la chimie verte et durable.En ce qui concerne les protocoles d'alcoxylation, deux lignées de recherche différentes basées sur la catalyse des métaux de transition appliqués aux réactions de domino ont été étudiées.Les processus domino sont des outils efficaces pour augmenter rapidement la complexité moléculaire par la formation de plus d'une liaison en une seule étape, en respectant la règle de l'économie. Bien que l'approche domino impliquant des alcènes et des allènes soit bien étudiée, des exemples impliquant des alcynes sont quelque peu limités dans la littérature. / During the whole period of my PhD, spent in co-tutorship between Università degli Studi dell’Insubria and UPMC in Paris, I have directed my efforts towards the study of C-O and C-N bonds formation by new transition metal-catalyzed reactions.Pursuing our ongoing project on intra- and intermolecular transition metal-catalyzed amination and alkoxylation reactions involving C-H functionalization, we tried to perform two intramolecular alkoxylation procedures of carbon-carbon multiple bonds to obtain oxygenated heterocycles and one intermolecular oxidative allylic amination to accomplish nitrogen-based scaffolds.Performed at intramolecular level, transition metal-catalyzed reactions offer a versatile strategy to obtain cyclic molecules, not easily obtainable by conventional synthetic methods and starting from readily available starting materials, and represent one of the key methodologies for the progress of green and sustainable chemistry. Dealing with alkoxylation protocols, two different research lines based on transition metal catalysis applied to domino reactions were investigated. Domino processes are efficient tools to rapidly increase the molecular complexity through the formation of more than one bond in a single step, respecting the rule of step economy. While the domino approach involving alkenes and allenes is well investigated, examples involving alkynes are somewhat limited in the literature.
15

Development of New Biarylphosphane Coinage Metal Complexes for the Regioselective Synthesis of Fused Carbocycles

Levesque, Patrick Pierre January 2012 (has links)
In the last century, no less than five nobel prizes have been awarded for the construction of carbon-carbon bonds : The Grignard reaction (1912), the Diels-Alder reaction (1950), the Wittig reaction (1979), Olefin metathesis (2005) and palladium cross-coupling reactions (2011). The latter two are transition metal catalyzed transformations and their impact on the synthesis of pharmaceutically active compounds, bulk chemicals, fine chemicals, high tech materials as well as agricultural chemicals has been phenomenal. These reactions have changed the way the scientific community views the science of synthesis. Unlike palladium, gold has long been considered to be an expensive and inert metal and therefore, research on Au catalysis was scarse until the begining of the new millenium. Once the scientific community realized the treasure trove of reactivity that gold had to offer, the number of chemical transformations as well as total syntheses involving Au(I)/Au(III) catalysis has sky rocketed. A methodology initially developped by Toste and coworkers has shown that intramolecular addition of a silyl enol ether on alkynes proceeds via a 5-exo¬-dig¬ process. In the first part of this thesis, we will discuss how the ancilary ligand on Au(I) species can influence pathway selectivity for these cyclizations, therefore opening the door to selective 6-endo-dig cyclizations to generate fused carbocycles. With biological processes as well as other competing processes becoming ever more efficient, the future of chemical synthesis is threatened. If it is to survive, the focus of new chemical transformations will have to be on the cost and the greeness of the process. In the second part of this thesis, we will demonstrate how Ag(I) and Cu(I) complexes can offer even better 6-endo-dig¬ selectivity than analogous Au(I) complexes. Silver is about 56 times less expensive than gold, and copper is about 453 times less expensive than gold. Due to the greatly increased selectivity as well as the diminished cost of the catalysts, we have provided access to an attractive 6-endo-dig¬ cyclization process.
16

Etude de réactions de cycloaddition [3+2] impliquant des composés mésoioniques et des dipolarophiles / Study of [3+2] cycloaddition reactions between mésoionic compounds and dipolarophiles

Decuypère, Elodie 17 November 2016 (has links)
Le premier objectif de ce travail a consisté à développer la réaction CuSAC (découverte au laboratoire) pour la synthèse régiosélective de pyrazoles poly-substitués, dans un contexte de méthodologie de synthèse. Il existe de nombreux composés biologiquement actifs contenant le motif pyrazole et peu de méthodes régiosélectives décrites pour les synthétiser. Développer une nouvelle réaction pour obtenir des pyrazoles poly-substitués de façon contrôlée était donc très intéressant pour des applications synthétiques.Le deuxième objectif a été d’appliquer cette réaction à la bioconjugaison et notamment au développement de sondes profluorescentes Des coumarines-sydnones subissant un effet d’extinction de fluorescence par le phénomène PeT ont été développées. Suite au couplage avec un alcyne, le pyrazole formé n’éteint plus lafluorescence de la coumarine. Ce type de sondes est très intéressant pour le marquage de biomolécules, car il n’y a aucun parasitage de fluorescence et donc ne nécessite aucun lavage.Le troisième objectif de la thèse a été d’explorer la réactivité des composés mésoioniques pour un alcyne, sous une catalyse au cuivre, dans le but de découvrir de nouvelles réactions click. Un criblage de 24 composés dans 9 conditions de catalyses différentes, faisant plus de 200 réactions réalisées, a été effectué. Deux réactions ont été révélées, dont une très prometteuse. Celle-ci permet dans la même opération de lier deux partenaires tout en libérant un fragment d’un des deux partenaires. Cette réaction a été étudiée dans le but de développer un outil de théranostique où être utilisée pour la mise au point de nouveaux espaceurs clivables. / The first aim of this work was the development of a new regioselective synthetic access to poly-substituted pyrazoles via the CuSAC reaction, previously discovered in the laboratory. The development of new reactions leading to poly-substituted pyrazoles with a full control of regioselectivity is highly interesting for synthetic applications.The second aim of this work was the application of this reaction for the labeling of complex biomolecules. To broaden the scope of the CuSAC, fluorogenic coumarin-sydnones which undergo fluorescence extinction via PeT have been designed and synthetized. Following the coupling reaction, the newly formed pyrazole core allows huge enhancement of the fluorescence signal.This kind of probes is highly interesting in the specific labelling of biomolecules avoiding washing steps.The last project of this thesis have been focused on the discovery of new [3+2] cycloaddition reaction implying a mesoionic compound and a terminal alkyne under copper catalysis. 24 mesoionic dipoles were screened for their ability to react with a terminal alkyne in 9 different catalytic conditions, yielding to more than 200 reactions screened. Two hits were identified, one of them holding great promise. This hit allows an efficient “click and release” reaction which should find tremendous applications, especially in the fields of theranostic and cleavable linker development.
17

Copper Catalysis: Perfluoroalkylation and Atom Transfer Radical Polymerization

Paeth, Matthew S. 22 September 2021 (has links)
No description available.
18

COPPER-CATALYZED HYDROXYCYCLOPROPANOL RING OPENING CHEMISTRY AND TOTAL SYNTHESIS OF GA18

Weida Liang (12447090) 22 April 2022 (has links)
<p>  </p> <p>Tetrahydrofurans (THFs) and tetrahydropyrans (THPs) are important core scaffolds frequently found in many bioactive natural products and important drug molecules. Regardless of the recent advances, achieving high stereoselective disubstituted or polysubstituted THFs and THPs still remains a synthetic challenge especially via metal catalyzed direct intramolecular Csp<sup>3</sup>-O bond formation for the ring closure. Cyclopropanols are important and useful building blocks in synthetic chemistry, and due to the intrinsic ring strain, they are prone to undergo ring opening process under transition metal catalyst to produce homoenolates. Herein, we have developed a novel Cu(II)-catalyzed hydroxyl tethered cyclopropanol ring-opening cyclization to diastereoselective syntheses of THF and THP rings. The reaction features a broad substrate scope, scalability, and good functional-group tolerability. Further mechanism study has revealed that the 7-membered metallocycle intermediate generated by Cu and hydroxycyclopropanol plays an important role in reaction pathway. It also enabled us to complete the shortest enantioselective total synthesis of hyperione A and B.</p> <p>The gibberellins contain a family of nearly 130 highly functionalized diterpenoids in the plant world. Gibberellic acids (GAs) are produced by plants and microorganisms to regulate the cell growth and development. We have developed a comprehensive synthesis strategy for the natural product GA<sub>18</sub> that includes the ene reaction, one-pot ozonolysis cascade aldol condensation, photocatalyzed [2+2] reaction, and Sm-induced rearrangement to build the critical tetracyclic skeleton.  Additionally, efforts also have been made in functional group interconversion to finalize the end game. </p>
19

Iodide-Catalyzed Alkene Oxyamination Reactions for the Synthesis of Nitrogen-Containing Heterocycles

Wu, Fan January 2019 (has links)
No description available.
20

Fused Heterocycles as Spinster Homolog 2 Inhibitors and Regio- and Stereoselective Copper-Catalyzed Borylation-Protodeboronation of 1,3-Diynes: Access to (Z)-1,3-Enynes

Burgio, Ariel Louise 15 May 2023 (has links)
Sphingosine 1-phosphate (S1P) is a lipid chemoattractant molecule. Once formed, S1P can be transported extracellularly by S1P transporters spinster homolog 2 (Spns2) or major facilitator domain containing 2B (mfsd2b). In the extracellular space, S1P can bind to S1P-specific G-protein coupled receptors (S1PR), which initiate many signaling pathways. A critical role of extracellular S1P is its ability to cause lymphocyte egress, which can have implications for inflammatory and autoimmune diseases. For this reason, there has been a growing interest in exploring potential spns2 inhibitors to further elucidate their therapeutic potential. Initial screenings confirmed that fused heterocycles, including phthalimide and benzoxazoles, demonstrated moderate inhibition of Spns2 using a HeLa cell assay. An extensive structure-activity relationship (SAR) study of these scaffolds was performed to analyze the impact of various amine head groups, regioisomers, and alkyl tails on performance. It was determined that 2-aminobenzoxazoles with secondary amines were potent inhibitors of the transporter. Additionally, the position of the lipophilic tail moiety played a large role in activity. From these modifications, SLB1122168 (2.44p) was found to be our lead compound. It was determined that (2.44p) had an IC50 of 94 ± 6 nM and was shown to be efficacious in decreasing lymphocyte count by 55% in a dose-dependent manner in both rat and mice models. The discovery of (2.44p) can serve as a novel chemical tool to investigate Spns2 biology and use it as a probe to determine the potential of Spns2 as a drug target. Organoboron compounds are useful synthetic intermediates in forming C-X, C-C, and C-H bonds. One way to synthesize these compounds is through copper catalysis. Copper is favorable to other transition metals because it is an Earth-abundant, low-cost metal that can be utilized in regio- and stereoselective reactions. Conjugated 1,3-enynes are important functional groups that iii are found in active natural products, organic synthetic intermediates, and materials. Previous methods used rare transition metals, designer ligands, or harsh acidic conditions to synthesize such compounds. In this dissertation, we developed a stereoselective one-pot copper-catalyzed semi-reduction of 1,3-diynes to produce (Z)-1,3-enynes. This method uses Cu(OAc)2, HBpin and Xantphos to successfully synthesize (Z)-1,3-enynes that were tolerated well over a broad substrate scope, including heterocyclic, alkyl, and aryl substituents. It was determined that this reaction went through a 2-boryl intermediate which was facilitated by a CuH species. / Doctor of Philosophy / Autoimmune diseases are caused by immune cells attacking healthy cells. The signaling lipid sphingosine-1-phosphate (S1P) plays a major role in trafficking immune cells, in which immune cells follow the S1P gradient from low concentrations (secondary lymphoid tissues) to high concentrations (lymph). In the case of multiple sclerosis, immune cells can attack healthy neurons that cause a myriad of symptoms. Currently, there are four drugs approved by the Food and Drug Administration (FDA) targeting the S1P pathway for multiple sclerosis. In all cases, these drugs act as S1P-receptor (S1PR) functional antagonists, which decreases the amount of extracellular S1P, which in turn decreases the immune cells in the lymph that can attack healthy cells. Unfortunately, all four drugs exhibit on-target cardiovascular side effects. To circumvent the on-target side effects seen in current FDA-approved drugs, other nodes of the S1P pathway have been assessed for multiple sclerosis. One node of interest is spinster homolog 2 (Spns2), a transporter of S1P, whose inhibition has also been shown to decrease extracellular S1P. In this dissertation, we will be assessing various inhibitors for their in vitro and in vivo properties. 1,3-Enynes are a functional group found in medicinally relevant compounds and can be used as intermediates to make more complex compounds. Current methods to make this functional group use expensive rare metals or harsh acidic conditions. We developed new methods that utilized copper, an abundant metal, and boron, an atom whose empty p orbital allows for unique reactivity. Utilizing a copper-hydride species allowed us to semi-reduce 1,3-diynes to (Z)-1,3-enynes, where water was used instead of acid to allow for the semi-reduction to occur. This reaction was shown to tolerate a wide range of substrates and gave good to excellent yield.

Page generated in 0.0763 seconds