• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Útoky na RSA založené na redukci mřížky / Attacks on RSA based on lattice reduction

Vaněček, Jaromír January 2018 (has links)
This thesis aims to describe in detail the Coppersmith's algorithm for fin- ding small solutions to polynomial congruences which is based on lattice basis reduction. This algorithm is a cornerstone of several attacks on the most wi- despread asymmetric cryptosystem RSA, therefore, next aim of the thesis is a description of selected attacks. As an important and current example, we can mention so-called ROCA attack which factorizes RSA modulus whenever the pri- mes are specifically crafted. At the end of the thesis, we implement both the Coppersmith's algorithm and the ROCA and several measurements and experi- ments are done. From the resulting data, one can deduce how the running time of the algorithm is affected by different parameters or what are the ideal values for these parameters in various situations. 1
2

On the complexity of matrix multiplication

Stothers, Andrew James January 2010 (has links)
The evaluation of the product of two matrices can be very computationally expensive. The multiplication of two n×n matrices, using the “default” algorithm can take O(n3) field operations in the underlying field k. It is therefore desirable to find algorithms to reduce the “cost” of multiplying two matrices together. If multiplication of two n × n matrices can be obtained in O(nα) operations, the least upper bound for α is called the exponent of matrix multiplication and is denoted by ω. A bound for ω < 3 was found in 1968 by Strassen in his algorithm. He found that multiplication of two 2 × 2 matrices could be obtained in 7 multiplications in the underlying field k, as opposed to the 8 required to do the same multiplication previously. Using recursion, we are able to show that ω ≤ log2 7 < 2.8074, which is better than the value of 3 we had previously. In chapter 1, we look at various techniques that have been found for reducing ω. These include Pan’s Trilinear Aggregation, Bini’s Border Rank and Sch¨onhage’s Asymptotic Sum inequality. In chapter 2, we look in detail at the current best estimate of ω found by Coppersmith and Winograd. We also propose a different method of evaluating the “value” of trilinear forms. Chapters 3 and 4 build on the work of Coppersmith and Winograd and examine how cubing and raising to the fourth power of Coppersmith and Winograd’s “complicated” algorithm affect the value of ω, if at all. Finally, in chapter 5, we look at the Group-Theoretic context proposed by Cohn and Umans, and see how we can derive some of Coppersmith and Winograd’s values using this method, as well as showing how working in this context can perhaps be more conducive to showing ω = 2.
3

Algorithmes de calcul de logarithmes discrets dans les corps finis

Thomé, Emmanuel 12 May 2003 (has links) (PDF)
Le calcul de logarithmes discrets est un problème central en cryptologie. Lorsqu'un algorithme sous-exponentiel pour résoudre ce problème existe, le cryptosystème concerné n'est pas nécessairement considéré comme disqualifié, et il convient d'actualiser avec soin l'état de l'art de la cryptanalyse. Les travaux de ce mémoire s'inscrivent dans cette optique. Nous décrivons en particulier comment nous avons atteint un record de calculs de logarithmes discrets: \GFn(607).<br /><br />Dans une première partie, nous exposons les différentes améliorations que nous avons apportées à l'algorithme de Coppersmith pour le calcul de logarithmes discrets en caractéristique 2. Ces améliorations ont rendu possible le record que nous avons atteint. La portée de ce calcul dépasse<br />le simple cadre des corps finis, à cause de l'existence de la réduction MOV d'une part, et de la récente introduction des cryptosystèmes fondés sur l'identité.<br /><br />On s'intéresse plus en détail, dans une seconde partie du mémoire, au problème classique de la résolution d'un système linéaire creux défini sur un corps fini, porté aux limites de ce que la technologie (théorique et pratique) permet. Nous montrons comment une amélioration substantielle de l'algorithme de Wiedemann par blocs a rendu celui-ci compétitif pour la résolution d'un grand système linéaire creux sur \GF p.<br /><br />Une partie de ce mémoire est consacrée au point de vue de l'expérimentateur, grand utilisateur de moyens de calcul, de la surcharge de travail humain que cela impose, et des constatations que cette position amène.
4

Méthodes algébriques pour l'analyse de sécurité des implantations d'algorithmes cryptographiques / Algebraic methods for security analysis of cryptographic algorithms implementations

Zeitoun, Rina 16 July 2015 (has links)
Le 10ème problème de Hilbert, consistant à trouver les solutions entières d'équations polynomiales est un problème crucial en cryptanalyse. Si ce dernier a été prouvé indécidable, Coppersmith publia en 1996 une méthode basée sur la réduction de réseaux permettant de trouver efficacement l'ensemble des petites solutions de certaines équations polynomiales. De nombreuses applications de cette méthode ont vu le jour dans le domaine de la cryptanalyse à clé publique, notamment lorsque le cryptosystème est exécuté sur un système embarqué et qu'une partie de la clé secrète est dévoilée par la réalisation d'attaques physiques sur le dispositif. Dans ce contexte, nous proposons une attaque physique sur le schéma de signature RSA en mode CRT où une application de la méthode de Coppersmith permet de compléter l'information obtenue par l'attaque physique. Nous proposons également un nouvel algorithme déterministe basé sur la méthode de Coppersmith pour factoriser les entiers de la forme $N=p^rq^s$ en temps polynomial lorsque $r$ ou $s$ sont suffisamment grands. Enfin, si les applications de la méthode de Coppersmith sont nombreuses, en pratique, du fait que les réseaux à réduire soient gigantesques, les petites solutions ne peuvent être retrouvées que jusqu'à une borne qui est plus petite que la borne théorique annoncée. Aussi, une autre contribution de cette thèse consiste en la proposition de deux méthodes permettant une accélération du temps d'exécution de l'algorithme de Coppersmith. Lorsque les deux méthodes sont combinées, le nouvel algorithme s'effectue des centaines de fois plus rapidement pour des paramètres typiques, permettant ainsi dans de nombreux cas d'atteindre la borne théorique. / The 10th Hilbert problem, which consists in finding integer solutions to polynomial equations is a crucial problem in cryptanalysis, which has been proven to be undecidable. However, Coppersmith published in 1996 a method based on lattice reduction, which allows to efficiently find all small solutions to some polynomial equations. Many applications of this method have risen in public key cryptanalysis, especially when the cryptosystem is executed on embedded systems and part of the secret key is revealed through physical attacks performed on the device. In this context, we propose in this thesis a physical attack on the RSA signature scheme when the CRT mode is used, where an application of Coppersmith's method allows to complete the information previously obtained by the physical attack. We also propose a new deterministic algorithm based on Coppersmith's method for factoring integers of the form $N=p^rq^s$ in polynomial time, under the condition that $r$ and/or $s$ are sufficiently large.Finally, if the applications of Coppersmith's method are numerous, in practice, since the lattices to be reduced are huge, the small solutions can only be recovered until a bound which is smaller than the enounced theoretical bound. Thus, another contribution of this thesis lies in the proposition of two methods which allow to speed up the execution time of Coppersmith's algorithm. When both speedups are combined, the new algorithm performs hundreds of times faster for typical parameters, which allows to reach the theoretical bound in many cases.
5

Algorithmique de la réduction de réseaux et <br />application à la recherche de pires cas pour l'arrondi de<br />fonctions mathématiques

Stehlé, Damien 02 December 2005 (has links) (PDF)
Les réseaux euclidiens sont un outil particulièrement puissant dans<br />plusieurs domaines de l'algorithmique, en cryptographie et en théorie<br />algorithmique des nombres par exemple. L'objet du présent mémoire est dual : nous améliorons les algorithmes de réduction des réseaux,<br />et nous développons une nouvelle application dans le domaine<br />de l'arithmétique des ordinateurs. En ce qui concerne l'aspect algorithmique, nous nous intéressons aux cas des petites dimensions (en dimension un, où il s'agit du calcul de pgcd, et aussi en dimensions 2 à 4), ainsi qu'à la description d'une nouvelle variante de l'algorithme LLL, en dimension quelconque. Du point de vue de l'application, nous utilisons la méthode<br />de Coppersmith permettant de trouver les petites racines de polynômes modulaires multivariés, pour calculer les pires cas pour l'arrondi des fonctions mathématiques, quand la fonction, le mode d'arrondi, et la précision sont donnés. Nous adaptons aussi notre technique aux mauvais cas simultanés pour deux fonctions. Ces deux méthodes sont des pré-calculs coûteux, qui une fois <br />effectués permettent d'accélérer les implantations des fonctions mathématiques élémentaires en précision fixée, par exemple en double précision.<br /><br />La plupart des algorithmes décrits dans ce mémoire ont été validés<br />expérimentalement par des implantations, qui sont<br />disponibles à l'url http://www.loria.fr/~stehle.
6

Contributions à la vérification formelle d'algorithmes arithmétiques

Martin-Dorel, Erik 26 September 2012 (has links) (PDF)
L'implantation en Virgule Flottante (VF) d'une fonction à valeurs réelles est réalisée avec arrondi correct si le résultat calculé est toujours égal à l'arrondi de la valeur exacte, ce qui présente de nombreux avantages. Mais pour implanter une fonction avec arrondi correct de manière fiable et efficace, il faut résoudre le "dilemme du fabricant de tables" (TMD en anglais). Deux algorithmes sophistiqués (L et SLZ) ont été conçus pour résoudre ce problème, via des calculs longs et complexes effectués par des implantations largement optimisées. D'où la motivation d'apporter des garanties fortes sur le résultat de ces pré-calculs coûteux. Dans ce but, nous utilisons l'assistant de preuves Coq. Tout d'abord nous développons une bibliothèque d'"approximation polynomiale rigoureuse", permettant de calculer un polynôme d'approximation et un intervalle bornant l'erreur d'approximation à l'intérieur de Coq. Cette formalisation est un élément clé pour valider la première étape de SLZ, ainsi que l'implantation d'une fonction mathématique en général (avec ou sans arrondi correct). Puis nous avons implanté en Coq, formellement prouvé et rendu effectif 3 vérifieurs de certificats, dont la preuve de correction dérive du lemme de Hensel que nous avons formalisé dans les cas univarié et bivarié. En particulier, notre "vérifieur ISValP" est un composant clé pour la certification formelle des résultats générés par SLZ. Ensuite, nous nous sommes intéressés à la preuve mathématique d'algorithmes VF en "précision augmentée" pour la racine carré et la norme euclidienne en 2D. Nous donnons des bornes inférieures fines sur la plus petite distance non nulle entre sqrt(x²+y²) et un midpoint, permettant de résoudre le TMD pour cette fonction bivariée. Enfin, lorsque différentes précisions VF sont disponibles, peut survenir le phénomène de "double-arrondi", qui peut changer le comportement de petits algorithmes usuels en arithmétique. Nous avons prouvé en Coq un ensemble de théorèmes décrivant le comportement de Fast2Sum avec double-arrondis.
7

Contributions à la vérification formelle d'algorithmes arithmétiques / Contributions to the Formal Verification of Arithmetic Algorithms

Martin-Dorel, Erik 26 September 2012 (has links)
L'implantation en Virgule Flottante (VF) d'une fonction à valeurs réelles est réalisée avec arrondi correct si le résultat calculé est toujours égal à l'arrondi de la valeur exacte, ce qui présente de nombreux avantages. Mais pour implanter une fonction avec arrondi correct de manière fiable et efficace, il faut résoudre le «dilemme du fabricant de tables» (TMD en anglais). Deux algorithmes sophistiqués (L et SLZ) ont été conçus pour résoudre ce problème, via des calculs longs et complexes effectués par des implantations largement optimisées. D'où la motivation d'apporter des garanties fortes sur le résultat de ces pré-calculs coûteux. Dans ce but, nous utilisons l'assistant de preuves Coq. Tout d'abord nous développons une bibliothèque d'«approximation polynomiale rigoureuse», permettant de calculer un polynôme d'approximation et un intervalle bornant l'erreur d'approximation à l'intérieur de Coq. Cette formalisation est un élément clé pour valider la première étape de SLZ, ainsi que l'implantation d'une fonction mathématique en général (avec ou sans arrondi correct). Puis nous avons implanté en Coq, formellement prouvé et rendu effectif 3 vérifieurs de certificats, dont la preuve de correction dérive du lemme de Hensel que nous avons formalisé dans les cas univarié et bivarié. En particulier, notre «vérifieur ISValP» est un composant clé pour la certification formelle des résultats générés par SLZ. Ensuite, nous nous sommes intéressés à la preuve mathématique d'algorithmes VF en «précision augmentée» pour la racine carré et la norme euclidienne en 2D. Nous donnons des bornes inférieures fines sur la plus petite distance non nulle entre sqrt(x²+y²) et un midpoint, permettant de résoudre le TMD pour cette fonction bivariée. Enfin, lorsque différentes précisions VF sont disponibles, peut survenir le phénomène de «double-arrondi», qui peut changer le comportement de petits algorithmes usuels en arithmétique. Nous avons prouvé en Coq un ensemble de théorèmes décrivant le comportement de Fast2Sum avec double-arrondis. / The Floating-Point (FP) implementation of a real-valued function is performed with correct rounding if the output is always equal to the rounding of the exact value, which has many advantages. But for implementing a function with correct rounding in a reliable and efficient manner, one has to solve the ``Table Maker's Dilemma'' (TMD). Two sophisticated algorithms (L and SLZ) have been designed to solve this problem, relying on some long and complex calculations that are performed by some heavily-optimized implementations. Hence the motivation to provide strong guarantees on these costly pre-computations. To this end, we use the Coq proof assistant. First, we develop a library of ``Rigorous Polynomial Approximation'', allowing one to compute an approximation polynomial and an interval that bounds the approximation error in Coq. This formalization is a key building block for verifying the first step of SLZ, as well as the implementation of a mathematical function in general (with or without correct rounding). Then we have implemented, formally verified and made effective 3 interrelated certificates checkers in Coq, whose correctness proof derives from Hensel's lemma that we have formalized for both univariate and bivariate cases. In particular, our ``ISValP verifier'' is a key component for formally verifying the results generated by SLZ. Then, we have focused on the mathematical proof of ``augmented-precision'' FP algorithms for the square root and the Euclidean 2D norm. We give some tight lower bounds on the minimum non-zero distance between sqrt(x²+y²) and a midpoint, allowing one to solve the TMD for this bivariate function. Finally, the ``double-rounding'' phenomenon can typically occur when several FP precision are available, and may change the behavior of some usual small FP algorithms. We have formally verified in Coq a set of results describing the behavior of the Fast2Sum algorithm with double-roundings.

Page generated in 0.0439 seconds