• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sekuritizace - analýza a dopady / Securitization - Analysis and Implications

Maťašová, Dominika January 2012 (has links)
In the present work we study the securitized products of ?financial markets with focus on collateralized debt obligations and the impact of fi?nancial crisis on the markets in the world. First part the thesis is focused on the methodology of the reasons behind launching these products, the portfolio, tranches and further on mechanisms how these structures are working. In the second part the thesis teoretically describes the valuation methods for which the Markov chains and copula functions are used. Further on follows the practical part with output from the quantitative analysis and at the end the thesis describes the impacts on economics of di?fferent countries and practically introduces the stress testing as the precaution tool.
12

Distribuição exponencial generalizada: uma análise bayesiana aplicada a dados de câncer / Generalized exponential distribution: a Bayesian analysis applied to cancer data

Juliana Boleta 19 December 2012 (has links)
A técnica de análise de sobrevivência tem sido muito utilizada por pesquisadores na área de saúde. Neste trabalho foi usada uma distribuição em análise de sobrevivência recentemente estudada, chamada distribuição exponencial generalizada. Esta distribuição foi estudada sob todos os aspectos: para dados completos e censurados, sob a presençaa de covariáveis e considerando sua extensão para um modelo multivariado derivado de uma função cópula. Para exemplificação desta nova distribuição, foram utilizados dados reais de câncer (leucemia mielóide aguda e câncer gástrico) que possuem a presença de censuras e covariáveis. Os dados referentes ao câncer gástrico tem a particularidade de apresentar dois tempos de sobrevida, um relativo ao tempo global de sobrevida e o outro relativo ao tempo de sobrevida livre do evento, que foi utilizado para a aplicação do modelo multivariado. Foi realizada uma comparação com outras distribuições já utilizadas em análise de sobrevivência, como a distribuiçãoo Weibull e a Gama. Para a análise bayesiana adotamos diferentes distribuições a priori para os parâmetros. Foi utilizado, nas aplicações, métodos de simulação de MCMC (Monte Carlo em Cadeias de Markov) e o software Winbugs. / Survival analysis methods has been extensively used by health researchers. In this work it was proposed the use a survival analysis model recently studied, denoted as generalized exponential distribution. This distribution was studied in all respects: for complete data and censored, in the presence of covariates and considering its extension to a multivariate model derived from a copula function. To exemplify the use of these models, it was considered real cancer lifetime data (acute myeloid leukemia and gastric cancer) in presence of censored data and covariates. The assumed cancer gastric lifetime data has two survival responses, one related to the total lifetime of the patient and another one related to the time free of the disease, that is, multivariate data associated to each patient. In these applications there was considered a comparative study with standard existing lifetime distributions, as Weibull and gamma distributions.For a Bayesian analysis we assumed different prior distributions for the parameters of the model. For the simulation of samples of the joint posterior distribution of interest, we used standard MCMC (Markov Chain Monte Carlo) methods and the software Winbugs.
13

Modelagens estatística para dados de sobrevivência bivariados : uma abordagem bayesiana / Statistical modeling to bivariate survival data : a bayesian approach

Ribeiro, Taís Roberta 31 March 2017 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2017-08-17T14:39:42Z No. of bitstreams: 1 DissTRR.pdf: 2739559 bytes, checksum: 80c76b7b0d4fcf15e1c9962556cd8745 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-17T14:39:52Z (GMT) No. of bitstreams: 1 DissTRR.pdf: 2739559 bytes, checksum: 80c76b7b0d4fcf15e1c9962556cd8745 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-17T14:39:58Z (GMT) No. of bitstreams: 1 DissTRR.pdf: 2739559 bytes, checksum: 80c76b7b0d4fcf15e1c9962556cd8745 (MD5) / Made available in DSpace on 2017-08-17T14:40:04Z (GMT). No. of bitstreams: 1 DissTRR.pdf: 2739559 bytes, checksum: 80c76b7b0d4fcf15e1c9962556cd8745 (MD5) Previous issue date: 2017-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The frailty models are used to model the possible associations between survival times. Another alternative developed for modeling the dependence between multivariate data is the use of models based on copulas functions. In this paper we propose two derived survival models of copula of the Ali-Mikhail-Haq (AMH) and of the Frank to model the dependence of bivariate data in the presence of covariates and censored observations. For inferential purposes, we conducted a Bayesian approach using Monte Carlo methods in Markov Chain (MCMC). Some discussions on the model selection criteria were presented. In order to detect influential observations we use the Bayesian method of cases of deletion of influence analysis based on the difference ^. Finally, we show the applicability of the proposed models to sets of simulated and real data. We present, too, a new survival model with bivariate fraction of healing, which takes into account three settings for the latent activation mechanism: random activation, first activation and final activation. We apply this model to a set of Direct Credit loan data to the Consumer mode (DCC) and compare the settings, through Bayesian criteria for selection of models, which of the three models best fit. Finally, we show our future proposal for further research. / Os modelos de fragilidade são utilizados para modelar as possíveis associações entre os tempos de sobrevivência. Uma outra alternativa desenvolvida para modelar a dependência entre dados multivariados e o uso dos modelos baseados em funções cápulas. Neste trabalho propusemos dois modelos de sobrevivência derivados das copulas de Ali-Mikhail-Haq (AMH) e de Frank para modelar a dependência de dados bivariados na presença de covariáveis e observações censuradas. Para fins inferenciais, realizamos uma abordagem bayesiana usando métodos Monte Carlo em Cadeias de Markov (MCMC). Algumas discussões sobre os critérios de seleção de modelos são apresentadas. Com o objetivo de detectar observações influentes utilizamos o método bayesiano de analise de influencia de deleção de casos baseado na divergência. Por fim, mostramos a aplicabilidade dos modelos propostos a conjuntos de dados simulados e reais. Apresentamos, também, um novo modelo de sobrevivência bivariado com fração de cura, que leva em consideração três configurações para o mecanismo de ativação latente: ativação aleatória, primeira ativação e áltima ativação. Aplicamos este modelo a um conjunto de dados de empréstimo de Credito Direto ao modo do Consumidor (DCC) e comparamos os ajustes por meio dos critérios bayesianos de seleção de modelos para verificar qual dos três modelos melhor se ajustou. Por fim, mostramos nossa proposta futura para a continuaçaão da pesquisa.
14

Dados de sobrevivência multivariados na presença de covariáveis e observações censuradas: uma abordagem bayesiana

Santos, Carlos Aparecido dos 04 March 2010 (has links)
Made available in DSpace on 2016-06-02T20:04:51Z (GMT). No. of bitstreams: 1 3028.pdf: 7339557 bytes, checksum: 16711c2271b754604bfa0b0fba30290b (MD5) Previous issue date: 2010-03-04 / In this work, we introduce a Bayesian Analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different frailties or latent variables are considered to capture the correlation among the survival times for the same individual. We also introduce a Bayesian analysis for some of the most popular bivariate exponential distributions introduced in the literature. A Bayesian analysis is also introduced for the Block & Basu bivariate exponential distribution using Markov Chain Monte Carlo (MCMC) methods and considering lifetimes in presence of covariates and censored data. In another topic, we introduce a Bayesian Analysis for bivariate lifetime data in the presence of covariates and censoring data assuming different bivariate Weibull distributions derived from some existing copula functions. A great computational simplification to simulate samples for the joint posterior distribution is obtained using the WinBUGS software. Numerical illustrations are introduced considering real data sets considering every proposed methodology. / Nesta tese introduzimos uma an´alise Bayesiana para dados de sobreviv encia multivariados, na presen¸ca de um vetor de covari´aveis e observa¸c oes censuradas. Diferentes fragilidades ou vari´aveis latentes s ao consideradas para capturar a correla¸c ao existente entre os tempos de sobreviv encia, para o mesmo indiv´ıduo. Tamb´em apresentamos uma an´alise Bayesiana para algumas das mais populares distribui¸c oes exponenciais bivariadas introduzidas na literatura. Uma an´alise Bayesiana tamb´em ´e introduzida para a distribui¸c ao exponencial bivariada de Block & Basu, usando m´etodos MCMC (Monte Carlo em Cadeias de Markov) e considerando os tempos de sobreviv encia na presen¸ca de covari´aveis e dados censurados. Em outro t´opico, introduzimos uma an´alise Bayesiana para dados de sobreviv encia bivariados na presen¸ca de covari´aveis e observa¸c oes censuradas, assumindo diferentes distribui¸c oes bivariadas Weibull derivadas de algumas fun¸c oes c´opulas existentes. Uma grande simplifica¸c ao computacional para simular amostras da distribui¸c ao a posteriori conjunta de interesse ´e obtida usando o software WinBUGS. Ilustra¸c oes num´ericas s ao introduzidas considerando conjunto de dados reais, para cada uma das metodologias propostas.

Page generated in 0.0787 seconds