• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charge properties of cuprates: ground state and excitations

Waidacher, Christoph 03 March 2000 (has links) (PDF)
This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (Projector Quantum Monte Carlo, exact diagonalization). Several results are compared to experimental data. The following materials have been chosen as candidates to represent different Cu-O sub-structures: Bi2CuO4 (isolated CuO4 plaquettes), Li2CuO2 (chains of edge-sharing plaquettes), Sr2CuO3 (chains of corner-sharing plaquettes), and Sr2CuO2Cl2 (planes of plaquettes). Several results presented in this thesis are valid for other cuprates as well. Two different aspects of charge properties are analyzed: 1) Charge properties of the ground state 2) Charge excitations. (gekürzte Fassung)
2

Charge properties of cuprates: ground state and excitations

Waidacher, Christoph 17 March 2000 (has links)
This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (Projector Quantum Monte Carlo, exact diagonalization). Several results are compared to experimental data. The following materials have been chosen as candidates to represent different Cu-O sub-structures: Bi2CuO4 (isolated CuO4 plaquettes), Li2CuO2 (chains of edge-sharing plaquettes), Sr2CuO3 (chains of corner-sharing plaquettes), and Sr2CuO2Cl2 (planes of plaquettes). Several results presented in this thesis are valid for other cuprates as well. Two different aspects of charge properties are analyzed: 1) Charge properties of the ground state 2) Charge excitations. (gekürzte Fassung)
3

Theoretical Investigations Of Core-Level Spectroscopies In Strongly Correlated Systems

Gupta, Subhra Sen 12 1900 (has links)
Ever since the discovery of exotic phenomena like high temperature (Tc) superconductivity in the cuprates and colossal magnetoresistance in the manganites, strongly correlated electron systems have become the center of attention in the field of condensed matter physics research. This renewed interest has been further kindled by the rapid development of sophisticated experimental techniques and tremendous computational power. Computation plays a pivotal role in the theoretical investigation of these systems, because one cannot explain their complicated phase diagrams by simple, exactly solvable models. Among the plethora of experimental techniques, various kinds of high energy electron spectroscopies are fast gaining importance due to the multitude of physical properties and phenomena which they can access. However the physical processes involved and the interpretation of the spectra obtained from these spectroscopies are extremely complex and require extensive theoretical modelling. This thesis is concerned with the theoretical modelling of a certain class of high energy electron spectroscopies, viz. the core-level electron spectroscopies, for strongly correlated systems of various kinds. The spectroscopies covered are Auger electron spectroscopy (AES), core-level photoemission spectroscopy (core-level PES) and X-ray absorption spec- troscopy (XAS), which provide non-magnetic information, and also X-ray magnetic circular and linear dichroism (XMCD and XMLD), which provide magnetic information. .

Page generated in 0.1072 seconds