• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and numerical investigation of a deep-corrugated steel, box-type culvert

Rauch, Alan F. January 1990 (has links)
No description available.
2

A comparison of analytical and field data for a rib-reinforced corrugated steel box-type culvert

Amla, Anita Krupanidhi January 1990 (has links)
No description available.
3

Experimental and numerical investigation of a deeply buried corrugated steel multi plate pipe

Moreland, Andrew January 2004 (has links)
No description available.
4

Analysis of a corrugated metal box type culvert

Oh, Saekyung January 1989 (has links)
No description available.
5

Numerical Investigations of Corrugated Structural Plate Pipe

White, Kevin E. 25 April 2011 (has links)
No description available.
6

Dynamic analysis of soil-steel composite bridges for high speed railway traffic : Case study of a bridge in Märsta, using field measurements and FE-analysis

Mellat, Peyman January 2012 (has links)
Soil-steel composite bridge refers to structures where a buried flexible corrugated steel pipe works in composite action with the surrounding soil. These structures are being increasingly used in road and railway projects as an alternative to standard type bridges, e.g. short- and medium span concrete beam- and portal frame bridges. On account of their economic advantage and short and easy construction operation, soil-steel composite bridges are getting more popular as railway crossings located far from the cities at the heart of the nature. In this research, the dynamic behaviour of soil-steel composite bridges under high-speed train passages is studied. The studied case is a short span soil-steel composite railway bridge located in Märsta close to Stockholm. The behaviour of the bridge is first observed through field measurements in terms of deflections, stresses, and accelerations at several locations on the bridge. The measured responses are then analysed in order to predict the properties of the soil and steel material working in composite action. Subsequently, 2D and 3D finite element models are developed in order to simulate the behaviour of the bridge. The models are calibrated using the field measurements through several parametric studies. The 3D-model also enables estimation of the load distribution, which is found to increase at higher train speeds. An effective width to be used in 2D analyses is proposed. Finally, the response of the bridge is studied under high-speed train models according to Eurocode.
7

Dynamic analysis of soil-steel composite railway bridges : FE-modeling in Plaxis

Aagah, Orod, Aryannejad, Siavash January 2014 (has links)
A soil-steel composite bridge is a structure comprised of corrugated steel plates, which are joined with bolted connections, enclosed in friction soil material on both sides and on the top. The surrounding friction soil material, or backfill, is applied in sequential steps, each step involving compaction of the soil, which is a necessity for the construction to accumulate the required bearing capacity. Soil-steel composite bridges are an attractive option as compared with other more customary bridge types, owing to the lower construction time and building cost involved. This is particularly true in cases where gaps in the form of minor watercourses, roads or railways must be bridged. The objective of this master thesis is the modelling of an existing soil-steel composite railway bridge in Märsta, Sweden with the finite element software Plaxis. A 3D model is created and calibrated for crown deflection against measurement data collected by the Division of Structural Engineering and Bridges of the Royal Institute of Technology (KTH) in Stockholm, Sweden. Once the 3D model is calibrated for deflection, two 2D models with different properties are created in much the same way. In model 1, the full axle load is used and the soil stiffness varied, and in model 2 the soil stiffness acquired in the 3D model is used and the external load varied. The results are compared to measurement data. In 2D model 1 an efficient width of 1,46 m for the soil stiffness is used in combination with the full axle load, and in 2D model 2 an efficient width of 2,85 m is used for the external load, in combination with the soil stiffness acquired in the 3D model. Aside from this, parametric studies are performed in order to analyse the effect of certain input parameters upon output results, and in order to analyse influence line lengths. Recreating the accelerations and stresses in the existing bridge using finite element models is complicated, and the results reflect this. Below are shown the discrepancies between model results and measurement data for the pipe crown. The scatter in the measurement data has not been taken into consideration for this; these specific numbers are valid only for one particular train passage. For crown deflection, the 3D model shows a discrepancy of 4%, 2D model 1 5% and 2D model 2 8% compared with measurement data. For crown acceleration, in the same order, the discrepancy with measurements is 1%, 71% and 21% for maximum acceleration, and 46%, 35% and 28% for minimum acceleration. For maximum crown tensile stress, the discrepancy is 95%, 263% and 13%. For maximum crown compressive stress, the discrepancy is 70%, 16% and 46%.
8

Dynamic Soil-Structure Interactionof Soil-Steel Composite Bridges : A Frequency Domain Approach Using PML Elements and Model Updating

FERNANDEZ BARRERO, DIEGO January 2019 (has links)
This master thesis covers the dynamic soil structure interaction of soil-steel culverts applyinga methodology based on the frequency domain response. At the first stage of this masterthesis, field tests were performed on one bridge using controlled excitation. Then, themethodology followed uses previous research, the field tests, finite element models (FEM)and perfectly matched layer (PML) elements.Firstly, a 2D model of the analysed bridge, Hårestorp, was made to compare the frequencyresponse functions (FRF) with the ones obtained from the field tests. Simultaneously, a 3Dmodel of the bridge is created for the following purposes: compare it against the 2D modeland the field tests, and to implement a model updating procedure with the particle swarmalgorithm to calibrate the model parameters. Both models use PML elements, which areverified against previous solution from the literature. The verification concludes that thePML behave correctly except for extreme parameter values.In the course of this master thesis, relatively advanced computation techniques were requiredto ensure the computational feasibility of the problem with the resources available.To do that, a literature review of theoretical aspects of parallel computing was performed, aswell as the practical aspects in Comsol. Then, in collaboration with Comsol Support and thehelp given by PDC at KTH it was possible to reduce the computational time to a feasiblepoint of around two weeks for the model updating of the 3D model.The results are inconclusive, in terms of searching for a perfectly fitting model. Therefore,further research is required to adequately face the problem. Nevertheless, there are some accelerometerswhich show a considerable level of agreement. This thesis concludes to discardthe 2D models due to their incapability of facing the reality correctly, and establishes a modeloptimisation methodology using Comsol in connection with Matlab.
9

Parametric Studies of Soil-Steel Composite Bridges for Dynamic Loads, a Frequency Domain Approach using 3D Finite Element Modelling

Ljung, Jonathan January 2019 (has links)
In this thesis, parametric studies have been performed for a soil-steel compositebridge to determine and investigate the most influential parameters on the dynamicresponse.High-speed railways are currently being planned in Sweden by the Swedish TransportAdministration with train speeds up to 320 km/h. According to the European designcodes, bridges must be verified with respect to dynamic resonance behaviour for trainspeeds exceeding 200 km/h. However, there are no guidelines or design criterion forperforming dynamic verifications of soil-steel composite bridges. The aim of thisthesis has therefore been to investigate the influence of the geometry and materialproperties of soil-steel composite bridges on their dynamic response.This thesis is based upon the frequency domain approach for dynamic analysis ofa soil-steel composite bridge using finite element software. In 2018, field measurementswere performed on a soil-steel composite bridge in Hårestorp, Sweden. Areference finite element model was developed based on previous research and wasverified against these field measurements. Parametric studies where performed byextrapolating the geometry of the reference model, focusing primarily on the crownheight, culvert span width and the location of the bedrock. Sensitivity analyses ofthe density- and stiffness of the soil was also performed.The parametric studies showed that the crown height was the most influential parameterwith respect to the amplitude of the resonance peak. Increasing it from 1 mto 3 m reduced the amplitude by approximately 70 %. An increased span width ofthe culvert was found to reduce the frequency and amplitude of the resonance peak,however increasing the stiffness of the culvert increased the resonance frequency.The position of the rock layer also reduced the amplitude of the resonance peak iflowered, likely because of lessened wave reflection. The lowest rock level investigatedshowed a significant decrease of more than 70 % in amplitude. However, the modelused to calculate this response was heavily extrapolated and thus difficult to verify.The sensitivity analyses showed that the soil density- and stiffness was negativelyand positively correlated with the resonance frequency, respectively. Additionally,the soil density lowered the amplitude of the resonance peak if increased.

Page generated in 0.0919 seconds