Spelling suggestions: "subject:"cortex cérébrale.""
11 |
Ephrin-B1 controls the spatial distribution of cortical pyramidal neurons by restricting their tangential migrationDimidschstein, Jordane 29 August 2012 (has links)
During development of the cerebral cortex, the various neuronal subtypes have to reach their correct final position in the post mitotic compartment where they complete their maturation and eventually establish functional networks. Precise positioning of individual neurons is acquired through tight regulation of the multiple transitions that neurons undergo on their way to the cortical plate. Neurons of the cerebral cortex are organized in layers and columns. Although several molecular mechanisms have been identified that control the final position of neurons along the radial dimension of the cortex (i.e. layer specificity), much less is known about how their final tangential, or mediolateral, distribution is controlled. However this may have a direct impact on the structural and functional organization of cortical columns, since sister neurons derived from the same progenitor display selective patterns of connectivity with each other and/or share similar functional properties. Here we studied the role of B-ephrins in the control of migration of cortical pyramidal neurons. Gain of function experiments using in utero electroporation of ephrin-B1 revealed a striking alteration of the tangential distribution of pyramidal neurons during the multipolar stage of radial migration, resulting in clustering of the pyramidal neurons in the cortical plate. Conversely, clonal analysis of migrating neurons in ephrin-B1 knockout mice showed a wider mediolateral dispersion of cortical neurons. Static and dynamic analyses of migrating neurons revealed that ephrin-B1 modulates the morphology of pyramidal neurons during their multipolar phase, thereby restricting their tangential migration at that stage. Our results demonstrate that ephrin-B1 is a specific inhibitor of non-radial migration of pyramidal neurons, thereby controlling the pattern of cortical columns. These data shed new light on this important aspect of pyramidal neuronal migration, and illustrate how alterations of patterns of migration can affect cortical column organization. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
12 |
Making cortex in a dish: an intrinsic mechanism of corticogenesis from embryonic stem cellsGaspard, Nicolas 03 September 2009 (has links)
The cerebral cortex develops through the coordinated generation of dozens of neuronal <p>subtypes, but the mechanisms involved remain unclear. Here we show that mouse embryonic <p>stem cells, cultured without any morphogen but in the presence of a sonic hedgehog inhibitor, <p>recapitulate in vitro the major milestones of cortical development, leading to the sequential <p>generation of a diverse repertoire of neurons that display most salient features of genuine <p>cortical pyramidal neurons. When grafted into the cerebral cortex, these neurons develop <p>patterns of axonal projections corresponding to a wide range of cortical layers, but also to <p>highly specific cortical areas, in particular visual and limbic areas, thereby demonstrating that <p>the identity of a cortical area can be specified without any influence from the brain. The <p>discovery of intrinsic corticogenesis sheds new light on the mechanisms of neuronal <p>specification, and opens new avenues for the modelling and treatment of brain diseases. <p>In a further attempt to prove the validity of this model, we have initiated the study of the <p>mechanism of action of FoxG1, a forkhead box transcription factor involved in the control of <p>cell fate decision in the developing cortex. / Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished
|
13 |
Organisation multi-échelle du cortex humain : des réseaux anatomo-fonctioneles à l'expression des gènes / Multiscale organization of the human cortex : from anatomo-functional cognitive networks to gene expressionCioli, Claudia 30 September 2015 (has links)
Ce travail est conçu dans le panorama de développement rapide de grandes bases de données qui rassemblent des ensembles de résultats expérimentaux sur l’organisation anatomo-fonctionnelle du cerveau humain à différentes échelles; l’abondance d’informations demande un effort intra et interdisciplinaire pour les synthétiser de façon cohérente. Le but de cette thèse est de contribuer à cet effort de synthèse. Le travail suit deux chemins: intra disciplinaire pour relier et synthétiser les résultats produits par la communauté de l’imagerie cérébrale, avec une focalisation particulière sur les Réseaux de Repos et les Réseaux Cognitifs; inter-disciplinaire pour relier l’organisation anatomo-fonctionnelle du cortex cérébral (résultats en imagerie cérébrale), et les expressions des gènes révélées par les bases de données publiées très récemment sur le transcriptome humain.Cette thèse est organisée en trois parties: dans Partie I nous étudions l’organisation anatomo-fonctionnelle du cortex à partir des études d’imagerie cérébrale. Dans la Partie II, nous étudions les liens entre l’expression corticale des gènes et l’organisation anatomo-fonctionnelle du cortex, à la fois en termes de similitude topographique et de congruence de fonction, en se focalisant en particulier sur le traitement de l’information et la mémorisation. Dans la Partie III, nous présentons une plate-forme pour intégrer dans une même représentation les données d’imagerie cérébrale et d’expression génétique.En perspective, nous montrons comment notre approche pourrait donner des nouveaux points de vu au débat sur les maladies neurodégénératives et psychiatriques, et sur les modelés des dynamiques corticales. / This work is conceived in the present panorama of fast development of large databases gathering experimental results about the organization of the human brain at different scales. This abundance of information calls for an intra and inter-disciplinary effort aimed to synthesize this information in a coherent way.The aim of this thesis was to contribute to this effort for knowledge synthesis to better understand the multiscale organization of the cerebral cortex. The work followed two paths: an intra-disciplinary effort to bring together results produced by the brain imaging community with particular focus on Resting State and Task Based MRI experiments; an inter-disciplinary attempt to draw a link between the anatomo-functional organization of the cortex as emerging from brain imaging studies and the cortical patterns of gene expression as revealed by recently published atlases of the adult human brain transcriptome.The thesis is organized into three parts: In Part I studied the anatomo-functional organization of the human cortex starting from brain imaging studies. In Part II we studied the link between cortical gene expression and the anatomo-functional organization of the cortex both in term of their topography and in term of their function, focusing in particular on information processing and memory formation. In Part III we present a platform that we developed to favor knowledge integration between cognitive networks and gene expression databases.In perspective we show how our approach may provide new insights to the debate about neurodegenerative and psychiatric diseases on one hand, modeling of dynamical processes in different areas of the cortex on the other.
|
14 |
Distribution intracellulaire et trafic des récepteurs à tyrosine kinase EphA4 et EphB2 à la synapse mature dans le système nerveux central murinBouvier, David January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
15 |
Dégénérescence des neurones moteurs cortico-spinaux dans un modèle murin de sclérose latérale amyotrophique : dynamique spatio-temporelle et mécanismes moléculaires / Degeneration of corticospinal motor neurons in a mouse model of amyotrophic lateral sclerosis : spatio-temporal dynamics and molecular mechanismsMarques, Christine 25 September 2017 (has links)
La sclérose latérale amyotrophique (SLA) se définit cliniquement par la dégénérescence combinée des neurones moteurs cortico-spinaux (NMCS) et des motoneurones bulbaires et spinaux (MnB et MnS). Quoique l’idée d’une origine corticale de la SLA soit de plus en plus considérée, la pathologie corticale, la dynamique spatio-temporelle de la dégénérescence des NMCS et les voies moléculaires impliquées restent peu connues. Ce travail de thèse a essentiellement cherché à pallier ce manque. Nous avons montré que chez les souris Sod1G86R, la perte des NMCS, qui semble se produire en l’absence de gliose réactionnelle majeure, se manifeste de manière somatotopique et précède l'apparition des symptômes moteurs et la dégénérescence des MnS. Nous avons purifié, grâce au développement d'un nouveau protocole, les NMCS adultes du cortex cérébral de souris saines ou malades à quatre stades de la maladie. L’analyse RNA-seq a permis d’identifier de nouveaux acteurs moléculaires précoces pouvant fournir une base pour le développement d'approches thérapeutiques fondées sur le maintien de NMCS sains et fonctionnels, et à long terme, à initier des stratégies thérapeutiques alternatives pour la SLA. / Amyotrophic lateral sclerosis (ALS) is clinically defined as the combined degeneration of the corticospinal motor neurons (CSMN) along with the bulbar and spinal motor neurons (BMN and SMN). While a growing body of evidence points to the cerebral cortex as the potential initiation site of ALS, little is known about the cortical pathology, the spatio-temporal dynamics of CSMN degeneration, and the molecular pathways involved. This thesis work aimed at filling this knowledge gap. In Sod1G86R, we showed that CSMN loss seems to take place without major gliosis, occurs in a somatotopic manner and precedes motor symptom appearance and SMN degeneration. We purified, thanks to the development of a novel protocol, adult CSMN from the cerebral cortex of healthy or diseased mice from early presymptomatic ages to the end stage of the disease. The RNA-seq analysis has made it possible to identify new and early molecular players in ALS. This would provide a foundation for the development of therapeutic approaches based on the maintenance of healthy and functional CSMN, and, on the long run, may in turn inform the development of alternative therapeutic strategies for ALS.
|
16 |
Méthodes géométriques et variationnelles pour le traitement d'IRM du tenseur de diffusionLenglet, Christophe 12 December 2006 (has links) (PDF)
Cette thèse est consacrée au développement d'outils de traitement pour l'Imagerie par Résonance Magnétique du Tenseur de Diffusion (IRM-TD). Cette technique d'IRM récente est d'une grande importance pour comprendre le fonctionnement du cerveau ou pour améliorer le diagnostic de pathologies neurologiques. Nous proposons des méthodes de traitement basées sur la géométrie Riemannienne, les équations aux dérivées partielles et les techniques de propagation de front. La première partie de ce travail est théorique. Après des rappels sur le système nerveux humain, l'IRM et la géométrie différentielle, nous étudions l'espace des lois normales multivariées. L'introduction d'une structure Riemannienne sur cet espace nous permet de définir des statistiques et des schémas numériques intrinsèques qui sont à la base des algorithmes proposés dans la seconde partie. Les propriétés de cet espace sont importantes pour l'IRM-TD car les tenseurs de diffusion sont les matrices de covariance de lois normales modélisant la diffusion des molécules d'eau en chaque voxel du milieu imagé. La seconde partie est méthodologique. Nous y introduisons des approches originales pour l'estimation et la régularisation d'IRM-TD. Puis nous montrons comment évaluer le degré de connectivité entre aires corticales et introduisons un modèle statistique d'évolution de surface permettant de segmenter ces images. Finalement, nous proposons une méthode de recalage non-rigide. La dernière partie de cette thèse est consacrée à l'analyse des connexions entre le cortex cérébral et les noyaux gris centraux, impliquées dans des tâches motrices, et à l'étude du réseau anatomo-fonctionnel du cortex visuel humain..
|
17 |
Distribution intracellulaire et trafic des récepteurs à tyrosine kinase EphA4 et EphB2 à la synapse mature dans le système nerveux central murinBouvier, David January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
18 |
Le récepteur nucléaire orphelin COUP-TFI contrôle l’identité sensorielle et l'activité neuronale dans les cellules post-mitotiques du néocortex chez la souris / The orphan nuclear receptor COUP-TFI controls sensory identity and neuronal activity in post-mitotic cells of the mouse neocortexMagrinelli, Elia 13 July 2016 (has links)
Le néocortex est une région du cerveau qui traite toutes les entrées sensorielles et créé des réponses comportementales. Il est subdivisé en zones fonctionnelles, chacune ayant une cytoarchitecture, un motif d’expression génique et un profil de connectivité spécifiques. L'organisation en zones est pré-modelée par des gènes organisateurs, et ensuite affinée par l’activité sensorielle. Dans cette étude, j'ai étudié d'abord si ce pré-modelage est établi dans les progéniteurs et/ou les cellules post-mitotiques, et si l'activité neuronale spontanée est nécessaire pour l’établissement de la connectivité correcte entre néocortex et thalamus, station relais principale des données sensorielles. Avec l'aide d'une série de souris transgéniques, j’ai montré que la fonction du gène organisateur COUP-TFI est suffisante et nécessaire pour organiser l'identité sensorielle dans les cellules post-mitotiques, et que COUP-TFI régule l'activité intrinsèque des neurones corticaux, influençant la bonne intégration des entrées thalamiques dans le cortex somatosensoriel. J’ai montré que COUP-TFI contrôle directement l'expression du gène Egr1, qui dépend fortement de l'activité neuronale. COUP-TFI et Egr1 agissent sur l'acquisition de la morphologie des cellules étoilées dans les neurones de la couche 4, cibles principales des axones thalamiques et trait typique des zones somatosensoriels primaires. En conclusion, ce travail montre que le pré-modelage cortical dépend primordialement d’un programme génétique établi dans les cellules post-mitotiques et que l'activité intrinsèque et les propriétés génétiques agissent ensemble pour façonner l'organisation des premiers circuits dans le néocortex. / The neocortex is a region of the brain that processes all sensory inputs creating appropriate behavioral responses. It is subdivided into functional areas, each with a specific cytoarchitecture, gene expression pattern and connectivity profile. The organization into areas is pre-patterned by the action of areal patterning genes, and subsequently refined by sensory evoked activity. In this study, I have first investigated whether early areal patterning is committed in progenitor and/or post-mitotic cells, and then assessed whether spontaneous neuronal activity is required in establishing correct connectivity between the neocortex and the thalamus, the principal relay station of peripheral sensory inputs. With the help of a series of transgenic mice, my work showed that the function of the areal patterning gene COUP-TFI is sufficient and necessary to organize sensory identity in post-mitotic cells, and that COUP-TFI regulates intrinsic activity properties of cortical neurons, and thus proper integration of thalamic inputs into the somatosensory cortex. In particular, I found that COUP-TFI directly controls the expression of the immediate early gene Egr1, which expression levels strongly depend on neuronal activity. Both COUP-TFI and Egr1 act on the acquisition of the stellate cell morphology of layer 4 neurons, the main targets of thalamic axons and a typical trait of primary somatosensory areas. In conclusion, this work demonstrates that cortical area patterning primordially depends on a genetic program established in post-mitotic cells and that intrinsic genetic and activity properties act together to shape the organization of early circuits in the neocortex.
|
19 |
Etude de l'expression du gène EphA7 et de son ligand ephrine-A5 dans le cortex en développement / Transcriptional regulation of EphA7 and ephrin-A5 gene in the developing forebrainPietri, Sandra 26 October 2010 (has links)
Le cortex cérébral constitue l’une des structures les plus évoluées et complexes de notre cerveau. Sa surface est divisée en de nombreuses aires fonctionnelles. La mise en place des aires corticales dépend à la fois de facteurs intrinsèques comme la sécrétion de morphogènes ou l’expression en gradient de différents facteurs de transcription, mais elle dépend aussi de facteurs extrinsèques au cortex, en particulier l'innervation par le thalamus. <p>Les ephrines et leurs récepteurs Eph constituent une famille multigénique de facteurs de signalisation impliqués dans divers événements clé du développement cortical où ils sont exprimés selon des profils spatio-temporels complexes. Aux stades tardifs du développement, EphA7 et l’ephrine-A5 sont exprimés en gradients complémentaires au sein de chaque territoire des aires présomptives, constituant ainsi les marqueurs les plus précoces de ces aires corticales. <p>Par la combinaison d’approches in-vitro utilisant la technique d’électroporation focale de tranches corticales embryonnaires, puis in-vivo en utilisant la technique de transgénèse d’addition, nous avons identifié une séquence régulatrice de EphA7 appelée pA7, capable de mimer l’expression endogène de EphA7 au sein du télencéphale dorsal en développement. La lignée de souris pA7-GFP ainsi générée exprime la GFP spécifiquement au sein du télencéphale dorsal durant les stades précoces. Aux stades périnataux cette expression se régionalise au sein de la plaque corticale de chacune des aires présomptives selon des gradients récapitulant ceux observés pour EphA7. Nous avons ensuite purifié des neurones exprimant différents niveaux d’EphA7 par la technique de FACS «Fluorescence-Activated Cell Sorting » et l’analyse de leur transcriptome nous a permis de trouver un grand nombre de gènes différentiellement exprimés. Tous ceux testés par la technique d’hybridation in situ sont exprimés selon un gradient latéral fort et médial faible dans le cortex pariétal, similaire à celui d’EphA7. L’examination de leur profil au sein de cortex de souris dépourvus d’afférences thalamiques, nous a permis de conclure que l’expression de ces gènes incluant EphA7 s’établit indépendamment de celles-ci. Ainsi, notre étude a permis d'identifier un répertoire de gènes neuronaux, pouvant agir en amont ou en combinaison avec EphA7 pour contrôler les facteurs intrinsèques essentiels à l’établissement des aires corticales./<p>The cerebral cortex is subdivided into distinct cortical areas characterized by specific patterns of gene expression and neuronal connectivity. The patterning of cortical areas is thought to be controlled by a combination of intrinsic factors that are expressed in the cortex, and external signals such as inputs from the thalamus. EphA7 is a member of the ephrin/Eph family of guidance factors that is involved in key aspects of the development of the cortex, and is expressed in several gradients within developing cortical areas. <p>By combining in vitro transcriptional assays and mouse transgenics, we identified a regulatory element of the EphA7 promoter, named pA7, that can recapitulate salient features of the pattern of expression of EphA7 in the developing forebrain, including gradients in the cortex. Using a mouse reporter line where GFP expression recapitulates EphA7 expression, we developed a GFP-based cell sorting procedure to isolate cortical neuron populations displaying different levels of EphA7 expression. Transcriptome analysis of these populations enabled to identify a specific array of differentially expressed genes. All genes validated further in vivo were confirmed to be expressed along distinct gradients in the developing cortical plate, similarly to EphA7. The expression of these genes was unchanged in mutant mice defective for thalamocortical projections, indicating that their graded pattern is largely intrinsic to the cortex. Our study identifies a novel repertoire of cortical neuron genes that may act upstream of, or together with EphA7, to control the intrinsic patterning of cortical areas. <p> <p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
20 |
Rôle de l'acide rétinoïque dans la neurogenèse corticale chez la souris / Role of retinoic acid during mouse cortical neurogenesisHaushalter, Carole 28 September 2016 (has links)
L’acide rétinoïque (AR), dérivé actif de la vitamine A (rétinol) circulante, est une petite molécule lipophile contrôlant divers aspects de la mise en place du système nerveux central des vertébrés. L'AR influence notamment le développement précoce du cerveau antérieur, où il contrôle la prolifération et la survie des cellules progénitrices dans l'épithélium neural prosencéphalique. Le développement neural est un processus qui s'articule en trois grandes étapes : la phase d'expansion latérale (E9,5-E10,5 chez la souris), la phase de neurogenèse (E11,5-stades périnataux) et la phase de gliogenèse (stades périnataux-adulte). Nous avons montré que l'AR produit par les méninges à partir de E13 influence la spécification et la migration neuronale au cours de la phase de neurogenèse. De plus, nos travaux suggèrent un rôle plus précoce de l'AR pour la formation et la prolifération des populations progénitrices et neuronales avant et au début de la phase de neurogenèse. Une combinaison de signaux intrinsèques et extrinsèques contrôle divers aspects du développement neural cortical. Nos travaux placent l'AR parmi ces facteurs modulateurs de la neurogenèse corticale. / Retinoic acid (RA), an active vitamin A (retinol) metabolite, is a small lipophilic molecule controlling numerous events during central nervous system development in vertebrates. RA is involved in early forebrain development by controlling cell proliferation and survival in the prosencephalic neuroepithelium. Neural development is a process progressing through three key steps: a phase of lateral expansion (E9.5-E10.5 in the mouse), a phase of neurogenesis (E11.5-perinatal stages) and a gliogenic phase (perinatal stages-adult). My work has shown that RA produced by the developing meninges from E13 influences neuronal specification and migration during the phase of neurogenesis. Moreover, our data suggest an earlier role of RA during the production and proliferation of progenitor and neuronal populations, before and at the onset of the neurogenic phase. A combination of extrinsic and intrinsic signals is required to orchestrate the various aspects of cortical development. RA is likely to be one of such extrinsic factors modulating cortical neurogenesis.
|
Page generated in 0.0551 seconds