1 |
Brain inspired approach to computational face recognitionda Silva Gomes, Joao Paulo January 2015 (has links)
Face recognition that is invariant to pose and illumination is a problem solved effortlessly by the human brain, but the computational details that underlie such efficient recognition are still far from clear. This thesis draws on research from psychology and neuroscience about face and object recognition and the visual system in order to develop a novel computational method for face detection, feature selection and representation, and memory structure for recall. A biologically plausible framework for developing a face recognition system will be presented. This framework can be divided into four parts: 1) A face detection system. This is an improved version of a biologically inspired feedforward neural network that has modifiable connections and reflects the hierarchical and elastic structure of the visual system. The face detection system can detect if a face is present in an input image, and determine the region which contains that face. The system is also capable of detecting the pose of the face. 2) A face region selection mechanism. This mechanism is used to determine the Gabor-style features corresponding to the detected face, i.e., the features from the region of interest. This region of interest is selected using a feedback mechanism that connects the higher level layer of the feedforward neural network where ultimately the face is detected to an intermediate level where the Gabor style features are detected. 3) A face recognition system which is based on the binary encoding of the Gabor style features selected to represent a face. Two alternative coding schemes are presented, using 2 and 4 bits to represent a winning orientation at each location. The effectiveness of the Gabor-style features and the different coding schemes in discriminating faces from different classes is evaluated using the Yale B Face Database. The results from this evaluation show that this representation is close to other results on the same database. 4) A theoretical approach for a memory system capable of memorising sequences of poses. A basic network for memorisation and recall of sequences of labels have been implemented, and from this it is extrapolated a memory model that could use the ability of this model to memorise and recall sequences, to assist in the recognition of faces by memorising sequences of poses. Finally, the capabilities of the detection and recognition parts of the system are demonstrated using a demo application that can learn and recognise faces from a webcam.
|
2 |
Multiparametric organ modeling for shape statistics and simulation procedures / Modélisation multiparamétriques des organes pour des statistiques de forme et des procédures de simulationPrieto Bernal, Juan Carlos 31 January 2014 (has links)
La modélisation géométrique a été l'un des sujets les plus étudiés pour la représentation des structures anatomiques dans le domaine médical. Aujourd'hui, il n'y a toujours pas de méthode bien établie pour modéliser la forme d'un organe. Cependant, il y a plusieurs types d'approches disponibles et chaque approche a ses forces et ses faiblesses. La plupart des méthodes de pointe utilisent uniquement l'information surfacique mais un besoin croissant de modéliser l'information volumique des objets apparaît. En plus de la description géométrique, il faut pouvoir différencier les objets d'une population selon leur forme. Cela nécessite de disposer des statistiques sur la forme dans organe dans une population donné. Dans ce travail de thèse, on utilise une représentation capable de modéliser les caractéristiques surfaciques et internes d'un objet. La représentation choisie (s-rep) a en plus l'avantage de permettre de déterminer les statistiques de forme pour une population d'objets. En s'appuyant sur cette représentation, une procédure pour modéliser le cortex cérébral humain est proposée. Cette nouvelle modélisation offre de nouvelles possibilités pour analyser les lésions corticales et calculer des statistiques de forme sur le cortex. La deuxième partie de ce travail propose une méthodologie pour décrire de manière paramétrique l'intérieur d'un objet. La méthode est flexible et peut améliorer l'aspect visuel ou la description des propriétés physiques d'un objet. La modélisation géométrique enrichie avec des paramètres physiques volumiques est utilisée pour la simulation d'image par résonance magnétique pour produire des simulations plus réalistes. Cette approche de simulation d'images est validée en analysant le comportement et les performances des méthodes de segmentations classiquement utilisées pour traiter des images réelles du cerveau. / Geometric modeling has been one of the most researched areas in the medical domain. Today, there is not a well established methodology to model the shape of an organ. There are many approaches available and each one of them have different strengths and weaknesses. Most state of the art methods to model shape use surface information only. There is an increasing need for techniques to support volumetric information. Besides shape characterization, a technique to differentiate objects by shape is needed. This requires computing statistics on shape. The current challenge of research in life sciences is to create models to represent the surface, the interior of an object, and give statistical differences based on shape. In this work, we use a technique for shape modeling that is able to model surface and internal features, and is suited to compute shape statistics. Using this technique (s-rep), a procedure to model the human cerebral cortex is proposed. This novel representation offers new possibilities to analyze cortical lesions and compute shape statistics on the cortex. The second part of this work proposes a methodology to parameterize the interior of an object. The method is flexible and can enhance the visual aspect or the description of physical properties of an object. The geometric modeling enhanced with physical parameters is used to produce simulated magnetic resonance images. This image simulation approach is validated by analyzing the behavior and performance of classic segmentation algorithms for real images.
|
Page generated in 0.0963 seconds