Spelling suggestions: "subject:"cosine"" "subject:"cosinus""
1 |
An Alternative Sensor Fusion Method For Object Orientation Using Low-Cost Mems Inertial SensorsBouffard, Joshua Lee 01 January 2016 (has links)
This thesis develops an alternative sensor fusion approach for object orientation using low-cost MEMS inertial sensors. The alternative approach focuses on the unique challenges of small UAVs. Such challenges include the vibrational induced noise onto the accelerometer and bias offset errors of the rate gyroscope. To overcome these challenges, a sensor fusion algorithm combines the measured data from the accelerometer and rate gyroscope to achieve a single output free from vibrational noise and bias offset errors.
One of the most prevalent sensor fusion algorithms used for orientation estimation is the Extended Kalman filter (EKF). The EKF filter performs the fusion process by first creating the process model using the nonlinear equations of motion and then establishing a measurement model. With the process and measurement models established, the filter operates by propagating the mean and covariance of the states through time.
The success of EKF relies on the ability to establish a representative process and measurement model of the system. In most applications, the EKF measurement model utilizes the accelerometer and GPS-derived accelerations to determine an estimate of the orientation. However, if the GPS-derived accelerations are not available then the measurement model becomes less reliable when subjected to harsh vibrational environments. This situation led to the alternative approach, which focuses on the correlation between the rate gyroscope and accelerometer-derived angle. The correlation between the two sensors then determines how much the algorithm will use one sensor over the other. The result is a measurement that does not suffer from the vibrational noise or from bias offset errors.
|
2 |
The spherical trigonometry and the globe / A trigonometria esfÃrica e o globo terrestreAntonio Edson Pereira da Silva Filho 07 June 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / A trigonometria esfÃrica surgiu das necessidades da Astronomia, na busca de descrever matematicamente o sistema solar. Mentes brilhantes como Euclides, Aristarco de Samos, ApolÃnio de Perga, Hiparco, Menelau de Alexandria, Ptolomeu, entre outros, estudaram sobre os triÃngulos esfÃricos. Neste trabalho, estudaremos os resultados fundamentais a trigonometria esfÃrica buscando uma associaÃÃo com o globo terrestre. Iniciaremos com o estudo dos elementos fundamentais de uma superfÃcie esfÃrica, donde definiremos os triÃngulos esfÃricos e provaremos suas principais propriedades, como soma das medidas dos Ãngulos internos e a fÃrmula de Girard para o cÃlculo de sua Ãrea. Em seguida, apresentamos a classificaÃÃo dos triÃngulos esfÃricos e as principais relaÃÃes entre os lados e os Ãngulos desses triÃngulos, como a lei dos senos e lei dos cossenos, alÃm de um breve estudo dos triÃngulos esfÃricos retÃngulos. Finalmente, consideramos a Terra como uma esfera, denominada globo terrestre, sobre a qual abordamos diversos conceitos geogrÃficos como paralelos, meridianos, latitudes, longitudes, a fim de utilizar da trigonometria esfÃrica para o cÃlculo de distÃncias e Ãngulos sobre a superfÃcie terrestre, criando o forte carÃter interdisciplinar entre MatemÃtica e Geografia. / The spherical trigonometry came from the needs of Astronomy, in the search for mathematically describing the solar system. Brilliant minds like Euclides, Aristarco of Samos, ApolÃnio of Perga, Hiparco, Menelau of Alexandria, Ptolomeu, and others, have studied the spherical triangles. In this work, we study the fundamental results spherical trigonometry seeking an association with the globe. We begin with the study of the fundamental elements of a spherical surface, where we define the spherical triangles and prove their important properties, such as sum of the measures of the internal angles and the Girard formula to calculate its area. Then, we present the classification of spherical triangles and the main relationships between the sides and angles of these triangles, as the law of sines and law of cosines, and a brief study of spherical rectangle triangles. Finally, we consider the Earth as a sphere called earth globe, over which we address various geographical concepts such as parallels, meridians, latitudes, longitudes, in order of use of spherical trigonometry to calculate distances and angles on the Earth's surface, creating strong interdisciplinary character between Mathematics and Geography.
|
3 |
Skibot 1.0, a Poling Cross-Country Skiing RobotKalliorinne, Otto January 2022 (has links)
This thesis project covers the development of a cross country skiing robot, with the purpose of being used as an instrument for measuring gliding properties of skis. The robot used in total 4 servomotors to control the motion of right and left arms with poles attached. A general movement pattern generator was developed to construct patterns that resemble the one of a human hand during poling. The final robot is able to generate a poling motion resulting in a forward propulsion, but further development to the design has to be made to use the robot for its intended purpose.
|
4 |
Geometric Model for Tracker-Target Look Angles and Line of Sight DistanceLaird, Daniel T. 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / To determine the tracking abilities of a Telemetry (TM) antenna control unit (ACU) requires 'truth data' to analyze the accuracy of measured, or observed tracking angles. This requires we know the actual angle, i.e., that we know where the target is above the earth. The positional truth is generated from target time-space position information (TSPI), which implicitly places the target's global positioning system (GPS) as the source of observational accuracy. In this paper we present a model to generate local look-angles (LA) and line-of-sight (LoS) distance with respect to (w.r.t.) target global GPS. We ignore inertial navigation system (INS) data in generating relative position at time T; thus we model the target as a global point in time relative to the local tracker's global fixed position in time. This is the first of three companion papers on tracking This is the first of three companion papers on tracking analyses employing Statistically Defensible Test & Evaluation (SDT&E) methods.
|
5 |
Caleidociclos / KaleidocyclesSilva, Reginaldo Alexandre da 13 January 2017 (has links)
Os caleidociclos têm sido utilizados como forma artística de apresentação de imagens, pinturas ou como parte de trabalhos artísticos, principalmente de imagens com simetrias; talvez os mais conhecidos sejam os trabalhos de M. C. Escher. As poucas publicações encontradas da teoria matemática envolvida nos caleidociclos dão base para imaginar e criar aplicações no desenvolvimento de habilidades e competências trabalhadas na escola. Para aumentar as possibilidades de aplicações de conceitos, teoremas e relações matemáticas estudadas no ensino básico, o presente trabalho apresenta algumas propostas de atividades utilizando os caleidociclos. As propostas foram elaboradas de acordo com o nível de ensino, ou seja, simetrias para o 7o ano, teorema de Pitágoras para os 8o e 9o anos do Ensino Fundamental, lei dos cossenos e relação fundamental da trigonometria para a 1a série e volume e área de superfície de sólidos geométricos para 2a série do Ensino Médio; algumas das propostas apresentam variações para se adequar ao nível de desenvolvimento em que a turma se encontra. Todos os moldes utilizados e outras possibilidades de caleidociclos, incluindo sólidos encaixantes aos caleidociclos, foram organizados ao final deste trabalho em um dos apêndices. Há também um apêndice com outros tipos de sólidos geométricos com movimentos, que podem ser usados no mesmo intuito de aplicação diferenciada da geometria espacial. / Kaleidocycles have been used asan artistic formof presentation of pictures, paintings or a part of artworks, especially images with symmetries; perhaps the best known works are M. C. Eschers. The few finded publications of the mathematical theory related to these three-dimensional rings give rise to imagine and create applications for developing skills to be worked in classroom. In order to increase the possibility of applications of concepts, theorems and mathematical relations, the present work proposes some activities dealing with kaleidocycles. The proposals were prepared in accordance with the students level of education, i.e., symmetries for the7th grade, the Pythagorean theorem for the 8th and 9th grades, law of cosines and the fundamental relation of trigonometry, volume and surface area of geometric solids for high school students; some of the proposals have variations to suit the level of development in which the class is at. All the molds used and other possibilities of kaleidocycles, including solids which fit into kaleidocycles, were organized at the end of this dissertation in one of the appendices. There is also an appendix with other types of mobile geometric solids that can be used in the same purpose in different applications of spatial geometry.
|
6 |
Caleidociclos / KaleidocyclesReginaldo Alexandre da Silva 13 January 2017 (has links)
Os caleidociclos têm sido utilizados como forma artística de apresentação de imagens, pinturas ou como parte de trabalhos artísticos, principalmente de imagens com simetrias; talvez os mais conhecidos sejam os trabalhos de M. C. Escher. As poucas publicações encontradas da teoria matemática envolvida nos caleidociclos dão base para imaginar e criar aplicações no desenvolvimento de habilidades e competências trabalhadas na escola. Para aumentar as possibilidades de aplicações de conceitos, teoremas e relações matemáticas estudadas no ensino básico, o presente trabalho apresenta algumas propostas de atividades utilizando os caleidociclos. As propostas foram elaboradas de acordo com o nível de ensino, ou seja, simetrias para o 7o ano, teorema de Pitágoras para os 8o e 9o anos do Ensino Fundamental, lei dos cossenos e relação fundamental da trigonometria para a 1a série e volume e área de superfície de sólidos geométricos para 2a série do Ensino Médio; algumas das propostas apresentam variações para se adequar ao nível de desenvolvimento em que a turma se encontra. Todos os moldes utilizados e outras possibilidades de caleidociclos, incluindo sólidos encaixantes aos caleidociclos, foram organizados ao final deste trabalho em um dos apêndices. Há também um apêndice com outros tipos de sólidos geométricos com movimentos, que podem ser usados no mesmo intuito de aplicação diferenciada da geometria espacial. / Kaleidocycles have been used asan artistic formof presentation of pictures, paintings or a part of artworks, especially images with symmetries; perhaps the best known works are M. C. Eschers. The few finded publications of the mathematical theory related to these three-dimensional rings give rise to imagine and create applications for developing skills to be worked in classroom. In order to increase the possibility of applications of concepts, theorems and mathematical relations, the present work proposes some activities dealing with kaleidocycles. The proposals were prepared in accordance with the students level of education, i.e., symmetries for the7th grade, the Pythagorean theorem for the 8th and 9th grades, law of cosines and the fundamental relation of trigonometry, volume and surface area of geometric solids for high school students; some of the proposals have variations to suit the level of development in which the class is at. All the molds used and other possibilities of kaleidocycles, including solids which fit into kaleidocycles, were organized at the end of this dissertation in one of the appendices. There is also an appendix with other types of mobile geometric solids that can be used in the same purpose in different applications of spatial geometry.
|
Page generated in 0.056 seconds