• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On the origin and formation process of glass with embedded metal and sulfides (GEMS) inferred from 3D observation and reproduction experiment / 三次元観察と再現実験から迫る彗星塵微粒子GEMSの起源と形成過程

Matsuno, Junya 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18805号 / 理博第4063号 / 新制||理||1584(附属図書館) / 31756 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 土`山 明, 准教授 三宅 亮, 准教授 伊藤 正一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
22

A Near-Infrared View of Structure and Star Formation in Galaxies

Kessler, Sarah Jayne January 2021 (has links)
No description available.
23

Warping, dust settling and dynamics of protoplanetary disks

O'Sullivan, Mark George January 2008 (has links)
The research presented in this thesis investigates several aspects of the evolutionary processes of T Tauri stars and their accompanying circumstellar disks. The versatile Monte Carlo radiation transfer technique, with several modifications and extensions, is used throughout to study the structure and constitution of both the circumstellar disk at large and the changeable and dynamic inner disk regions. The photopolarimetric variability of AA Tau in the Taurus star forming region is modelled in a fully 3D manner. I find that a magnetospherically induced warp in the accretion disk at roughly the stellar co-rotation radius occults the star and reproduces both the observed period and duration and the required brightness and polarisation variations. The model SEDs allow estimates of the disk mass, radial extent and large- scale density structure. Using a modified SPH code we find the interaction of a 5.2kG stellar magnetic field inclined at 30° to the rotation axis with the disk, is capable of generating a warp of the size and shape needed to reproduce the observed variations. Modified Monte Carlo models capable of incorporating any number of dust particle grain sizes distributed throughout the disk in vertical and radial distributions, in a fully 3D manner are presented. This versatile tool allows the investigation of evolutionary processes such as dust settling and grain growth predicted to occur in T Tauri sources as they age. A Mie Scattering code was also adapted and incorporated into the models allowing us to determine optical properties for dust grains and distributions of any size. I present model SEDs fitting the latest publicly available IR data for a number of T Tauri sources and reproduce the observational effects of dust grain growth and settling with a high degree of success. The fits are by no means unique and the structural parameters required to produce them are quite uncertain but it is possible to determine useful information on the larger scale structure and bulk constituents of these disks. A fully 3D non-LTE radiative transfer code using CO line emissions as a tracer of the disk dynamics and able to simulate any disk structure or geometry, either analytical or imported from a hydrodynamic simulation, is presented. Signatures attributed to the disk dynamics and spiral density structure derived from hydrodynamic simulations of massive disks are investigated and resolved. Line profiles and contour maps of the velocity of the emitting material are generated and compared with observations.
24

Scattering of light by dust in bipolar outflow sources

Quinn, Dale Edward, Physics, Australian Defence Force Academy, UNSW January 2001 (has links)
Interstellar dust plays an important role in the physics of the interstellar medium, as well as the formation and evolution of stars. The presence of dust is often indicated in optical images by dark lanes which bisect spiral galaxies, or seen directly as reflection nebulosity around stars or emission nebulosity if sufficient heating is present. Of interest in this thesis is the dust that is associated with bipolar outflow sources. Bipolar outflows can occur in either evolved stars or in young stellar objects, and are so named because they consist of two lobes which are thought to be due to out-flowing dust and gas, with a dark lane between them due to thick dust in a circumstellar disk or shell which often blocks the light from the central star. The spatial distribution of the properties of dust around bipolar outflow sources has been examined using a combination of theoretical and observational techniques. To aid the interpretation of observations of bipolar outflow sources, we have modelled the wavelength dependence of light from 0.36 to 22\um, scattered by dust particles with varying characteristics. The results were then presented in the form of colour excess ratios. These model ratios can be applied to observations if the contribution due to the central star is able to be removed, such that all that remains in the image is the effect of the dust particles. The scattering of light by dust particles was modelled by varying six different characteristics: grain material, size (particle radius from 0.002 to 0.75\um), mantle temperatures and thicknesses, shape, and orientation. Of those characteristics, the largest variation in the colour excess ratios resulted from varying grain composition and size. Different scattering angles also produce a noticeable variation in the colour excess ratios, however the effect is difficult to distinguish from the general extinction due to dust around the source. Water ice mantles were also found to significantly change the colour excess ratios. Grain shape and orientation produced only small variations in the colour excess ratios. Three bipolar outflow sources were studied as part of this thesis, two evolved objects, OH~231.8+4.2 and Mz\,3, and the young T-Tauri object Rno\,91. The observations involved multi-wavelength imaging in the infrared, from which colours and colour excess ratios were obtained at various points of the bipolar outflows and then compared to the predictions made in the modelling. The most extensive data set analysed was seven images of the object OH~231.8+4.2 which were used in a multi-wavelength study in the infrared H to N bands (1.25--12\um). The central source position of the object has been confined to less than an arcsec using the longer wavelength images and an L--M colour image. The two peaks which dominate the lobes in the shorter wavelength images were found to be scattering peaks where the light from the central source is scattered from the walls of the lobes. The spatial distribution of water ice in the nebula has also been constrained to the circumstellar disk which has a torus or disk shape rather than being a spherical shell. The colour excess ratios derived for the nebula from the images also suggest slightly different dust properties between the circumstellar disk, lobe walls and within the lobe cavities. The young T-Tauri star Rno\,91 also contains ice, and was observed between J and L. The central star which illuminates the nebula was shown to be coincident with the brightest point in these images. Using colour excess ratio results for various parts of the nebula, it was shown that the dust close to the central star is likely to contain larger grains than the diffuse ISM, but with a similar composition. Moving away from the central star, the dust becomes more like that observed in the diffuse ISM. The presence of water ice on dust close to the central star was confirmed using images centred in the ice band. The protoplanetary bipolar outflow source Mz\,3 is slightly more evolved than OH 231.8+4.2, and does not have evidence of any water ice in the circumstellar disk. Images of this object were obtained between J and 10\um. The presence of warm dust throughout the inner bipolar lobes of this object is noticeable by the brightness of the lobes in the image at 10\um. Line profiles through the position of the central source of the 10\um\ image demonstrate that there is a circumstellar shell close to the central source which has an inner radius of $\lta\,375$\,AU. Colour excess ratio results for the bipolar lobes suggest that the dust associated with Mz\,3 is generally smaller than that found in the diffuse ISM. The properties of the dust in the bipolar lobes were also observed to be different to the dust closer to the central source and lying in the circumstellar disk. The small sizes for dust in Mz\,3 is consistent with the high velocity outflows that have been associated with the object.
25

Circumplanetary dust dynamics : application to Martian dust tori and Enceladus dust plumes

Makuch, Martin January 2007 (has links)
Our Solar system contains a large amount of dust, containing valuable information about our close cosmic environment. If created in a planet's system, the particles stay predominantly in its vicinity and can form extended dust envelopes, tori or rings around them. A fascinating example of these complexes are Saturnian rings containing a wide range of particles sizes from house-size objects in the main rings up to micron-sized grains constituting the E ring. Other example are ring systems in general, containing a large fraction of dust or also the putative dust-tori surrounding the planet Mars. The dynamical life'' of such circumplanetary dust populations is the main subject of our study. In this thesis a general model of creation, dynamics and death'' of circumplanetary dust is developed. Endogenic and exogenic processes creating dust at atmosphereless bodies are presented. Then, we describe the main forces influencing the particle dynamics and study dynamical responses induced by stochastic fluctuations. In order to estimate the properties of steady-state population of considered dust complex, the grain mean lifetime as a result of a balance of dust creation, life'' and loss mechanisms is determined. The latter strongly depends on the surrounding environment, the particle properties and its dynamical history. The presented model can be readily applied to study any circumplanetary dust complex. As an example we study dynamics of two dust populations in the Solar system. First we explore the dynamics of particles, ejected from Martian moon Deimos by impacts of micrometeoroids, which should form a putative tori along the orbit of the moon. The long-term influence of indirect component of radiation pressure, the Poynting-Robertson drag gives rise in significant change of torus geometry. Furthermore, the action of radiation pressure on rotating non-spherical dust particles results in stochastic dispersion of initially confined ensemble of particles, which causes decrease of particle number densities and corresponding optical depth of the torus. Second, we investigate the dust dynamics in the vicinity of Saturnian moon Enceladus. During three flybys of the Cassini spacecraft with Enceladus, the on-board dust detector registered a micron-sized dust population around the moon. Surprisingly, the peak of the measured impact rate occurred 1 minute before the closest approach of the spacecraft to the moon. This asymmetry of the measured rate can be associated with locally enhanced dust production near Enceladus south pole. Other Cassini instruments also detected evidence of geophysical activity in the south polar region of the moon: high surface temperature and extended plumes of gas and dust leaving the surface. Comparison of our results with this in situ measurements reveals that the south polar ejecta may provide the dominant source of particles sustaining the Saturn's E ring. / In unserem Sonnensystem befindet sich eine große Menge an Staub, der viele Informationen über unseren Kosmos enthält. Wird der Staub im System um den Planeten gebildet, bleibt er vorwiegend in dessen Nähe und bildet Staubhüllen, -tori oder -ringe um ihn. Ein faszinierendes Beispiel eines solchen Komplexes sind die Saturnringe, in denen von mikrometergroßen Partikeln bis zu hausgroßen Körpern alle Partikelgrößen vertreten sind. Weitere Beispiele sind Ringsysteme im Allgemeinen, sowie der vermutete Staubring um Mars. Das dynamische Verhalten einer solchen Staubpopulation ist Hauptthema dieser Dissertation. In dieser Arbeit wurde ein allgemeines Modell zur Erzeugung, Dynamik und Vernichtung von planetarem Staub entwickelt. Endogene und exogene Mechanismen zur Produktion von Staub an atmosphärenlosen Körpern werden vorgestellt. Desweiteren werden die wichtigsten Kräfte welche die Teilchendynamik beeinflussen, sowie die Auswirkung von stochastischen Fluktuationen untersucht. Die Lebenszeiten der Staubkörner als Bilanz zwischen Staubproduktion und -vernichtung werden bestimmt, um den stationären Zustand der Staubkonfiguration abzuschätzen. Die Lebenszeit des Staubes hängt stark von den Eigenschaften der Umgebung und der Teilchen sowie von deren dynamischer Vergangenheit ab. Das vorgestellte Modell kann auf alle planetaren Systeme angewandt werden. Als Beispiel wurden zwei Staubpopulationen in unserem Sonnensystem studiert. Zuerst wurde die Dynamik des Staubes untersucht, welcher durch Mikrometeorideneinschläge auf dem Marsmond Deimos produziert wird und die vermuteten Marstori erzeugt. Der Poynting-Robertson-Effekt, als indirekter Einfluss des Strahlungsdruckes, bewirkt eine signifikante Langzeitänderung der Torusgeometrie. Desweiteren verursacht der Strahlungsdruck eine stochastische Dispersion des nichtsphärischen Staubteilchenensembles, was eine Verringerung der Teilchenzahldichten beziehungsweise der entsprechenden optischen Tiefen im Torus bewirkt. Weiterhin wurde die Staubdynamik in der Umgebung des Saturnmondes Enceladus untersucht. Während des Vorbeifluges der Raumsonde Cassini registrierte der Staubdetektor eine Staubpopulation von mikrometergroßen Teilchen um den Mond. Überraschenderweise wurde die maximal registrierte Staubrate eine Minute vor der größten Annäherung an den Mond gemessen. Diese Asymmetrie der Messung kann, wie in dieser Arbeit demonstriert, mit einer lokalen Staubquelle am Südpol des Mondes erklärt werden. Andere Instrumente der Cassini - Sonde belegen die geophysikalische Aktivität der Südpolregion des Mondes in Form einer erhöhten Oberflächentemperatur und Fontänen von Gas und Staub an der Südpolumgebung. Der Vergleich der numerischen Simulationen mit den in - situ - Messungen zeigt, dass die Südpolquelle die voraussichtlich wichtigste Quelle von E-Ringteilchen ist.
26

Experimentální studium teploty elektronů a iontů v impaktovém plazmatu / Experimental study of electron and ion temperatures in impact plasmas

Kočiščák, Samuel January 2021 (has links)
Title: Experimental study of electron and ion temperatures in impact plasmas Author: Samuel Kočiščák Department: Department of Surface and Plasma Science - DSPS Supervisor: doc. RNDr. Jiří Pavlů, Ph.D., DSPS Abstract: In-situ analysis of a hypervelocity grain impact is a complex discipline, making use of multiple physical phenomena. An important one, if not the most important one, being a dust impact ionisation. Future experiments could benefit substantially from better understanding of the phenomenon. The goal of this work was a study of the impact ionisation per-se, with the objective: to experimentally determine the effective temperatures of post-impact charged ejecta. Importance of this parameter is obvious, although different approaches scarcely ever report similar results. Our way was the analysis in a retarding potential analyzer. Firstly, large data set of laboratory data from dust accelerator was analyzed, secondly a Monte Carlo study of the results and the analyzer itself was performed. Lastly, recommendations for future in-situ experiments are provided based on our results. Keywords: impact plasmas cosmic dust impact ionization
27

Synthesis, Modification, and Analysis of Silicate Cosmic Dust Analogues Using Ion-Beam Techniques

Young, Joshua Michael 08 1900 (has links)
Silicates analogous to cosmic dust were synthesized, modified, and analyzed utilizing ion-beam techniques with Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD). Silicate dust is a common constituent in interstellar space, with an estimated 50% of dust produced in the stellar winds of M class Asymptotic Giant Branch (AGB) stars. Silicate dust acts as a surface upon which other chemicals may form (water ice for example), increasing significance in the cosmochemistry field, as well as laboratory astrophysics. Silicate formation in the stellar winds of AGB stars was simulated in the laboratory environment. Three sequential ion implantations of Fe-, MgH2-, and O- with thermal annealing were used to synthesize a mixture appropriate to silicate dust in the surface layers of a p-type Si substrate. Post implantation He+ irradiation was shown to preferentially induce crystalline formation in the analogue prior to thermal annealing. This effect is believed to originate in the ion-electron interaction in the Si substrate. The effects of ionization and ion energy loss due to electronic stopping forces is believed to precipitate nucleation in the amorphous media. For annealing temperatures of 1273 K, predominant quartz formation was found in the substrate, whereas lower annealing temperatures of 1000 K formed enstatite without post-implantation He+ irradiation, and olivine with He+ irradiation. Post annealed crystalline phase modification was investigated via x-ray diffraction and elemental compositions were investigated utilizing RBS. Finally, the interdiffusion of Fe and Mg at temperatures of 900-1100 K was investigated with RBS, and activation energies for interdiffusion were extracted for the transition from amorphous to crystalline phase in the silicate analogues. Fe had an interdiffusion energy of 1.8 eV and Mg 1.5eV. The produced analogues have similar properties to those inferred from infrared spectroscopy of the stellar winds of M-class AGB stars with an oxygen-rich outflow. This work established a method of silicate production using ion beam modifications, explored He+ irradiation effects in the annealed structures, and derived interdiffusion activation energies for Fe and Mg in the amorphous structure. Grain sizes were <100 nm with the observed formation of quartz, enstatite, and olivine.
28

On the Winds of Carbon Stars and the Origin of Carbon : A Theoretical Study

Mattsson, Lars January 2009 (has links)
Carbon is the basis for life, as we know it, but its origin is still largely unclear. Carbon-rich Asymptotic Giant Branch (AGB) stars (carbon stars) play an important rôle in the cosmic matter cycle and may contribute most of the carbon in the Galaxy. In this thesis it is explored how the dust-driven mass loss of these stars depends on the basic stellar parameters by computing a large grid of wind models. The existence of a critical wind regime and mass-loss thresholds for dust-driven winds are confirmed. Furthermore, a steep dependence of mass loss on carbon excess is found. Exploratory work on the effects of different stellar metallicities and the sizes of dust grains shows that strong dust-driven winds develop also at moderately low metallicities, and that typical sizes of dust grains affect the wind properties near a mass-loss threshold. It is demonstrated that the mass-loss rates obtained with the wind models have dramatic consequences when used in models of carbon-star evolution. A pronounced superwind develops soon after the star becomes carbon rich, and it therefore experiences only a few thermal pulses as a carbon star before the envelope is lost. The number of dredge-up events and the thermal pulses is limited by a self-regulating mechanism: each thermal pulse dredges up carbon, which increases the carbon excess and hence also the mass-loss rate. In turn, this limits the number of thermal pulses. The mass-loss evolution during a thermal pulse (He-shell flash) is considered as an explanation of the observations of so-called detached shells around carbon stars. By combining models of dust-driven winds with a stellar evolution model, and a simple hydrodynamic model of the circumstellar envelope, it is shown that wind properties change character during a He-shell flash such that a thin detached gas shell can form by wind-wind interaction. Finally, it is suggested that carbon stars are responsible for much of the carbon in the interstellar medium, but a scenario where high-mass stars are major carbon producers cannot be excluded. In either case, however, the carbon abundances of the outer Galactic disc are relatively low, and most of the carbon has been released quite recently. Thus, there may neither be enough carbon, nor enough time, for more advanced carbon-based life to emerge in the outer Galaxy. This lends some support to the idea that only the mid-part of the Galactic disc can be a “Galactic habitable zone”, since the inner parts of the Galaxy are plagued by frequent supernova events that are presumably harmful to all forms of life.
29

Cosmic Dust Detection by the Solar Orbiter Using Machine Learning

Lönngren, Joar, Tiston, Ludwig January 2023 (has links)
This project aims to investigate neural network systems as an effective tool for the in-space captured dust impact signal detection. Cosmic dust is the nanometre to micrometre fine-sized particles that exist in the interplanetary region. They originate from comets, asteroids, the planets and their moons and rings, or even the interstellar region. Some are visible to the human eye as, for instance, zodiacal light. However, most dust grains are sparsely spread in space and can be captured only by in-situ measurements. One method to capture such a small grain in space utilizes the whole spacecraft’s surface as a detector and uses the onboard electric field measurement to identify their impact signals. Those signals are highly non-linear and often identified manually. A neural network system is a possible solution to improve dust detection for a massive dataset.The European Space Agency’s (ESA) solar physics mission, Solar Orbiter, has electric field measurement (PWI) onboard and can detect the micrometeorite impact signals near the sun. We used two types of PWI datasets to investigate the use of neural network systems in interplanetary dust detection.We first used a pre-trained neural network to the High-Frequency (HF) Time Domain Sampler (TDS) data to adapt further to the new dataset. We were able to obtain good detection classifications as the previous work except for the data with high time resolution, which has not been used for the pre-training before. Therefore, we implemented extra preprocessing to enable classification of data with high time resolution.We trained and tested another neural network on another type of PWI dataset, that is, the Low-Frequency (LF) continuous data. This data type is different from the TDS data type in that it does not come in packets but as a continuous data stream covering an entire day and has a lower sampling frequency. Which required different preprocessing-procedures.Based on the two types of neural network analysis we use above; we have finally been able to investigate the characteristics of dust distribution in the interplanetary region. Using the statistical analysis obtained by the SolO/PWI between April of 2020 to Mars of 2023, among others, the following characteristics have been found: The neural network analysed dust impact rates show a similar trend as onboard processed dust impact rates. Dust impact amplitude was found to be correlated to distance from the sun, spacecraft velocity, and spacecraft radial velocity. The impact rate increases as the spacecraft travels sunward. Much of the dust appears to have speeds lower than the spacecraft. Overall, from this study, we concluded that the HF neural network is better in dust signal detection, but the LF network can be improved. Shortcomings and possible improvements are presented in the conclusions.
30

Microtektites and other glasses from new sites in the Transantarctic Mountains, Antarctica

Angotti, Lauren Elizabeth 28 January 2020 (has links)
No description available.

Page generated in 0.072 seconds