511 |
Svarta hål i Vintergatan : Mörk materia, gravitationslinser och MACHOsHöglund Aldrin, Ronja January 2009 (has links)
Ett av de mest notoriska dilemman i dagens kosmologi är den mörka materians natur och dess förekomst i universum. Mot bakgrund av detta har nya forskningsdiscipliner med rötterna i Einsteins relativitetsteori växt fram, bl.a. teorin om gravitationslinser som möjliggör en indirekt observationsmetod av ljussvaga kompakta objekt som annars skulle vara mycket svåra eller omöjliga att upptäcka på traditionella vis, såsom svarta hål. Via en genomgång av grundteorin för gravitationslinser, några enkla teoretiska studier och en grundläggande felmarginalsanalys illustreras hur olika typer av kompakta objekt i Vintergatans omedelbara omgivning kan ge upphov till vissa karakteristiska linsfenomen. Detta sätts i relation till rådande teorier om den tidigaste stjärnbildningen och de massiva kompakta rester som denna generation av mycket massiva stjärnor bör ha efterlämnat – i synnerhet intermediära svarta hål med massor på 100-1000 Msol som ännu kan finnas i dagens mörka galaxhalor. Sådana objekt kan komma att upptäckas i betydligt högre grad i framtiden med de observationstekniker som är under utveckling idag. / One of the most notorious dilemmas in cosmology today is the nature of dark matter and its distribution in the universe. Due to this, new research disciplines originating from Einstein’s theory of relativity have emerged, among them the theory of gravitational lensing which makes it possible to indirectly observe faint compact objects that would otherwise be very difficult or impossible to discover with traditional means, up to and including black holes. Through a rundown of the basic theory of gravitational lensing, a couple of simple theoretical models and an elementary error analysis, it is illustrated how different types of compact objects in the immediate vicinity of the Milky Way can yield various characteristic lensing phenomena. This is put in relation to contemporary theories regarding the earliest star formation and the massive compact remnants this generation of very massive stars should have left behind – particularly intermediate black holes with masses of 100-1000 Msun that may still be found in dark galactic halos of today. Such objects can contribute to future observations carried out with the observational technology being developed at present.
|
512 |
Constraining scalar field dark energy with cosmological observationsSamushia, Lado January 1900 (has links)
Doctor of Philosophy / Department of Physics / Bharat Ratra / High precision cosmological observations in last decade suggest that about 70% of our universe's energy density is in so called "Dark Energy" (DE). Observations show that DE has negative effective pressure and therefore unlike conventional energy sources accelerates the cosmic expansion instead of decelerating it. DE is highly uniform and has become a dominant component only recently.
The simplest candidate for DE is the time-independent cosmological constant. Although successful in fitting available data, the cosmological constant model has a number of theoretical shortcomings and because of that alternative models of DE are considered. In one such scenario a cosmological scalar field that slowly rolls down its potential acts like a time-dependent cosmological constant.
I have used different independent cosmological data sets to constrain the time dependence of DE's energy density in the framework of the slowly-rolling cosmological scalar field model. Present data favors a time-independent cosmological constant, but the time-dependent DE can not be ruled out at high confidence level. Ongoing and planned cosmological probes and surveys will provide more and better quality data over the next decade. When the new data sets are available we will be able to either detect the time dependence of DE or constrain it to a very small physically uninteresting value.
|
513 |
Tracing large-scale structure with radio sourcesLindsay, Samuel Nathan January 2015 (has links)
In this thesis, I investigate the spatial distribution of radio sources, and quantify their clustering strength over a range of redshifts, up to z _ 2:2, using various forms of the correlation function measured with data from several multi-wavelength surveys. I present the optical spectra of 30 radio AGN (S1:4 > 100 mJy) in the GAMA/H-ATLAS fields, for which emission line redshifts could be deduced, from observations of 79 target sources with the EFOSC2 spectrograph on the NTT. The mean redshift of these sources is z = 1:2; 12 were identified as quasars (40 per cent), and 6 redshifts (out of 24 targets) were found for AGN hosts to multiple radio components. While obtaining spectra for hosts of these multi-component sources is possible, their lower success rate highlights the difficulty in acheiving a redshift-complete radio sample. Taking an existing spectroscopic redshift survey (GAMA) and radio sources from the FIRST survey (S1:4 > 1 mJy), I then present a cross-matched radio sample with 1,635 spectroscopic redshifts with a median value of z = 0:34. The spatial correlation function of this sample is used to find the redshiftspace (s0) and real-space correlation lengths (r0 _ 8:2 h 1Mpc), and a mass bias of _1.9. Insight into the redshift-dependence of these quantities is gained by using the angular correlation function and Limber inversion to measure the same spatial clustering parameters. Photometric redshifts from SDSS/UKIDSS are incorporated to produce a larger matched radio sample at z ' 0:48 (and low- and high-redshift subsamples at z ' 0:30 and z ' 0:65), while their redshift distribution is subtracted from that taken from the SKADS radio simulations to estimate the redshift distribution of the remaining unmatched sources (z ' 1:55). The observed bias evolution over this redshift range is compared with model predictions based on the SKADS simulations, with good agreement at low redshift. The bias found at high redshift significantly exceeds these predictions, however, suggesting a more massive population of galaxies than expected, either due to the relative proportions of different radio sources, or a greater typical halo mass for the high-redshift sources. Finally, the reliance on a model redshift distribution to reach to higher redshifts is removed, as the angular cross-correlation function is used with deep VLA data (S1:4 > 90 _Jy) and optical/IR data from VIDEO/CFHTLS (Ks < 23:5) over 1 square degree. With high-quality photometric redshifts up to z _ 4, and a high signal-to-noise clustering measurement (due to the _100,000 Ks-selected galaxies), I am able to find the bias of a matched sample of only 766 radio sources (as well as of v vi the VIDEO sources), divided into 4 redshift bins reaching a median bias at z ' 2:15. Again, at high redshift, the measured bias appears to exceed the prediction made from the SKADS simulations. Applying luminosity cuts to the radio sample at L > 1023 WHz 1 and higher (removing any non-AGN sources), I find a bias of 8–10 at z _ 1:5, considerably higher than for the full sample, and consistent with the more numerous FRI AGN having similar mass to the FRIIs (M _ 1014 M_), contrary to the assumptions made in the SKADS simulations. Applying this adjustment to the model bias produces a better fit to the observations for the FIRST radio sources cross-matched with GAMA/SDSS/UKIDSS, as well as for the high-redshift radio sources in VIDEO. Therefore, I have shown that we require a more robust model of the evolution of AGN, and their relation to the underlying dark matter distribution. In particular, understanding these quantities for the abundant FRI population is crucial if we are to use such sources to probe the cosmological model as has been suggested by a number of authors (e.g. Raccanelli et al., 2012; Camera et al., 2012; Ferramacho et al., 2014).
|
514 |
Cosmological tests of general relativityBaker, Theresa Mary January 2013 (has links)
Understanding the apparent accelerating expansion rate of the universe is a challenge for modern cosmology. One category of explanations is that we are using the wrong gravitational physics to study the observations. Our paradigmatic theory of gravity – Einstein’s theory of General Relativity – may be subsumed by a larger theory. This thesis develops a selection of tools for testing General Relativity and the numerous alternative theories of gravity that have been put forward. I advocate that an elegant and efficient way to test this space of theories is through the use of parameterized frameworks. Inspired by the Parameterized Post-Newtonian framework I develop a new formalism, the Parameterized Post-Friedmann formalism, that aims to unify the linear cosmological perturbation theory of many alternatives to General Relativity. Having introduced the Parameterized Post-Friedmann formalism and demonstrated its application via a suite of examples, I examine several issues surrounding parameterized tests of gravity. I first consider how the structure of a parameterization can influence the constraints obtainable from a given set of data. I then consider how to describe the growth of the large-scale structure of the universe in a parameterized manner. This leads to a convenient tool for calculating corrections to the growth rate of structure in modified theories, which can be used both with the Parameterized Post-Friedmann formalism or independently of it. I present forecasts for how well generalized deviations from General Relativity will be constrained by the next generation of galaxy surveys. Throughout, this thesis aims to take a synoptic approach to theories of modified gravity, rather than focussing on specific models. A question yet to be answered is whether this approach is realistic in practical terms. The final part of this thesis takes the first steps towards an answer.
|
515 |
Challenging fragmentation : overcoming the subject-object divide through the integration of art-making and material culture studiesCope, Andrew January 2014 (has links)
This practice-led thesis explores ways in which to integrate art and material culture studies as a manifestation of philosophy’s process thread. In doing so, its goal is to generate a praxis which is able to come to holistic terms with the fragmenting dualism of subject-object binaries. By seizing my own subjectivity in its representation of this problem, the thesis develops a performance-led practice which seeks to overcome the barriers that its divisive ‘I’ presents to process. This interdisciplinary project is an explicit response to the figure of Friedrich Nietzsche; his bearing helps to constitute its methodology and repertoire as his presence is creatively teased from the pages of his own books. Part One of the thesis discusses how the mimetic aims of artistic representation were harnessed to challenge my own subjectivity’s singular sense of authority. Thereafter, Nietzsche’s pre-modern temperament comes to enable a holistic consideration of the perceptual ambiguity within Jacques Lacan’s geometric model of ‘seeing things’. Part Two engages with representation as a method of making difference for the bridging of subject-object divisions. This occurs as subjective experience and is extended to some inorganic others, producing creative outcomes which aim to access a cosmological principle of affect that is identified with Nietzsche’s thesis of will to power. The third part of this thesis aligns the research aim, of making apparent the oneness of the cosmos, with the shamanic dimensions of some vintage slapstick cinema. In its development, it comes to terms with the subjective gaze and identifies process-led strategies for challenging and changing its outlooks. This provides a background for Part Four, which marks the beginning of my attempts to engage the gaze of other people in processes that procure and ideally affect their perspectives. While the first four parts of the thesis demonstrate the progress of the research project through the deployment of art and its affecting capacities, its final two parts put the work of philosophy into aesthetic effects, and represent artworks that constitute elements of the thesis itself. Part Five evidences my art practice re-engaging with the world through a project which holistically involves the outlooks of subjects, whilst nevertheless challenging their perceptual precepts. Part Six discusses a performative experiment that consolidates and tests the research findings in a potentially affective structure, expressed through Laurence Halprin’s RSVP cycle. Finally, as it reflects on the potential healing capacities of my practical research and the possibilities for ‘doing’ philosophy, the thesis details how an art-making that embraces both visual and material cultures through the eventness of performance might be able to overcome the problematic perceptual divides that limit the progress of process logics.
|
516 |
On the nature and origins of thermodynamic asymmetryShahvisi, Arianne January 2014 (has links)
No description available.
|
517 |
Toward understanding of the complete thermal history of the universe : probing the early universe by gravitationWatanabe, Yuki 02 June 2010 (has links)
Gravitational waves are truly transparent to matter in the Universe and carry the information of the very early epoch. We show that the energy density spectrum of the primordial gravitational waves has characteristic features due to the successive changes in the relativistic degrees of freedom during the radiation era. Our calculations are solely based on the standard model of cosmology and particle physics, and therefore these features must exist. Our calculations significantly improve the previous ones which ignored these effects and predicted a smooth, featureless spectrum. Going back in time to the beginning of the radiation era, reheating of the Universe must have taken place after inflation for primordial nucleosynthesis to begin. We show that reheating occurs spontaneously in a broad class of inflation models with [scientific symbols] gravity (Ø is inflaton). The model does not require explicit couplings between Ø and bosonic or fermionic matter fields. The couplings arise spontaneously when Ø settles in the vacuum expectation value (vev) and oscillates. This mechanism allows inflaton quanta to decay into any fields which are not conformally invariant in [scientific symbols] gravity theories. Applying the above method, we study implications of the large-N species solution to the hierarchy problem, proposed by G. Dvali, for reheating after inflation. We show that, in this scenario, the decay rates of inflaton fields through gravitational decay channels are enhanced by a factor of N, and thus they decay into N species of the quantum fields very efficiently. Without violating energy conservation, cosmological consideration places non-trivial constraints on Dvali's solution to the hierarchy problem. Going back in time still further, we study the period just before the beginning of reheating, the era of coherent oscillation of scalar fields. We show that non-Gaussian primordial curvature perturbations appear temporarily in the coherent oscillation phase after multi-field inflation. We directly solve the evolution equation of non-Gaussianity on super-horizon scales caused by the non-linear influence of entropy perturbations on the curvature perturbations during this phase. We show that our approach precisely matches with the so-called "separate universe approach" or "δN formalism" by studying a simple quadratic two-field potential. / text
|
518 |
Robust Measurement of the Cosmic Distance Scale Using Baryon Acoustic OscillationsXu, Xiaoying January 2012 (has links)
We present techniques for obtaining precision distance measurements using the baryon acoustic oscillations (BAO) through controlling systematics and reducing statistical uncertainties. Using the resulting distance-redshift relation, we can infer cosmological parameters such as w, the equation of state of dark energy. We introduce a new statistic, ɷ(l)(r(s)), for BAO analysis that affords better control over systematics. It is computed by band-filtering the power spectrum P(k) or the correlation function ξ(r) to extract the BAO signal. This is conducive to several favourable outcomes. We compute ɷ(l)(r(s)) from 44 simulations and compare the results to P(k) and ξ(r). We find that the acoustic scales and theoretical errors we measure are consistent between all three statistics. We demonstrate the first application of reconstruction to a galaxy redshift survey. Reconstruction is designed to partially undo the effects of non-linear structure growth on the BAO, allowing more precise measurements of the acoustic scale. We also present a new method for deriving a smooth covariance matrix based on a Gaussian model. In addition, we develop and perform detailed robustness tests on the ξ(r) model we employ to extract the BAO scale from the data. Using these methods, we obtain spherically-averaged distances to z = 0.35 and z = 0.57 from SDSS DR7 and DR9 with 1.9% and 1.7% precision respectively. Combined with WMAP7 CMB observations, SNLS3 data and BAO measurements from 6dF, we measure w = -1.08 ± 0.08 assuming a wCDM cosmology. This represents a ~8% measurement of w and is consistent with a cosmological constant.The preceding does not capture the expansion history of the universe, H(z), encoded in the line-of-sight distance scale. To disentangle H(z), we exploit the anisotropic BAO signal that arises if we assume the wrong cosmology when calculating the clustering distribution. Since we expect the BAO signal to be isotropic, we can use the magnitude of the anisotropy to separately measure H(z) and D(A)(z). We apply our simple models to SDSS DR7 data and obtain a ~3.6% measurement of D(A)(z=0.35) and a ~8.4% measurement of H(z = 0.35).
|
519 |
Aspects of hybrid inflation in supersymmetrySanderson, Jennifer January 1999 (has links)
No description available.
|
520 |
Topological defects from cosmological phase transitionsLarsson, Sebastian E. January 1998 (has links)
No description available.
|
Page generated in 0.052 seconds