Spelling suggestions: "subject:"transcriptional"" "subject:"posttranscriptional""
1 |
Characterization of RNA exosome in Insect Cells : Role in mRNA SurveillanceHessle, Viktoria January 2011 (has links)
The exosome, an evolutionarily conserved protein complex with exoribonucleolytic activity, is one of the key players in mRNA quality control. Little is known about the functions of the exosome in metazoans. We have studied the role of the exosome in nuclear mRNA surveillance using Chironomus tentans and Drosophila melanogaster as model systems. Studies of the exosome subunits Rrp4 and Rrp6 revealed that both proteins are associated with transcribed genes and nascent pre-mRNPs in C. tentans. We have shown that several exosome subunits interact in vivo with the mRNA-binding protein Hrp59/hnRNP M, and that depleting Hrp59 in D. melanogaster S2 cells by RNAi leads to reduced levels of Rrp4 at the transcription sites. Our results on Rrp4 suggest a model for cotranscriptional quality control in which the exosome is constantly recruited to nascent mRNAs through interactions with specific hnRNP proteins. Moreover, we show that Rrp6 interacts with mRNPs in transit from the gene to the nuclear pore complex, where it is released during early stages of nucleo-cytoplasmic translocation. Furthermore, we show that Rrp6 is enriched in discrete nuclear bodies in the salivary glands of C. tentans and D. melanogaster. In C. tentans, the Rrp6-rich nuclear bodies colocalize with SUMO. We have also constructed D. melanogaster S2 cells expressing human b-globin genes, with either wild type of mutated splice sites, and we have studied the mechanisms by which the cells react to pre-mRNA processing defects. Our results indicate that two surveillance responses operate co-transcriptionally in S2 cells. One requires Rrp6 and retains defective mRNAs at the transcription site. The other one reduces the synthesis of the defective transcripts through a mechanism that involves histone modifications. These observations support the view that multiple mechanisms contribute to co-transcriptional surveillance in insects. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.
|
2 |
Influência da dinâmica transcricional no dobramento da molécula de RNA / Influence of the transcriptional dynamics on RNA foldingCosta, Pedro Rafael [UNESP] 23 August 2016 (has links)
Submitted by Pedro Rafael Costa null (costapr@ibb.unesp.br) on 2016-08-29T12:34:19Z
No. of bitstreams: 1
Tese-PedroRafaelCosta.pdf: 3405758 bytes, checksum: db4d115ece49bde1fd0f2a7768c97377 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-30T17:27:57Z (GMT) No. of bitstreams: 1
costa_pr_dr_bot.pdf: 3405758 bytes, checksum: db4d115ece49bde1fd0f2a7768c97377 (MD5) / Made available in DSpace on 2016-08-30T17:27:57Z (GMT). No. of bitstreams: 1
costa_pr_dr_bot.pdf: 3405758 bytes, checksum: db4d115ece49bde1fd0f2a7768c97377 (MD5)
Previous issue date: 2016-08-23 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Uma grande variedade de sequências de RNA presentes nos transcriptomas mas com funções ainda desconhecidas tem estimulado o desenvolvimento de técnicas experimentais e computacionais que colaborem na determinação do papel dessas moléculas. Entretanto, a compreensão dos mecanismos de ação de uma dada molécula de RNA envolve não somente a determinação de sua estrutura de mínima energia livre, mas também o estudo do comportamento de suas conformações metaestáveis. Os algoritmos existentes para predição da estrutura de moléculas de RNA ignoram armadilhas cinéticas que podem levar a formação de estruturas subótimas e utilizam modelos termodinâmicos incompletos, muitas vezes ignorando a formação de estruturas mais complexas, como os pseudonós. Nesse trabalho apresentamos um algoritmo para simulação do dobramento cotranscricional para o estudo dos efeitos da conformação espacial da molécula de RNA na cinética da transcrição. A partir da determinação das conformações permitidas, o algoritmo estabelece uma série de reações de transição entre esses estados, com valores das taxas de ocorrência ponderados através de uma distribuição de probabilidade de Boltzmann baseada na variação de energia livre de Gibbs desses estados. As energias livres das estruturas secundárias são determinadas segundo o modelo dos primeiros vizinhos e dois algoritmos foram implementados para o cálculo da energia livre dos pseudonós. Finalmente, simulações de Monte Carlo baseadas no algoritmo de Gillespie foram realizadas para determinação do caminho de dobramento da molécula. Exemplos de aplicações demonstram o potencial do programa desenvolvido. / The discovery of a wide variety of RNA sequences present in transcriptomes with unknown function has stimulated the development of experimental and computational techniques to determine the function of these molecules. However, understanding the activities of a given RNA molecule involves not only finding its minimum free energy structure, but also studying its metastable structures. The methodologies available for predicting RNA structure ignore kinetic traps that can lead to formation of suboptimal structures and are based in over-simplified thermodynamic models. These methodologies usually can not predict RNA conformations with more complex topologies, such as pseudoknots. In this work we present a computational model for cotranscriptional folding that considers the influence of RNA structures during transcription elongation. After determining the allowed conformations for the sequence of interest, the algorithm established a series of allowed reactions between these structures. The reactions rates are weighted by the Boltzmann factor based on Gibbs free energy variation between the states. The free energies for secondary structures were estimated by the nearest-neighbor model, and two algorithms were implemented to calculate the free energy of pseudoknots. Finally, Monte Carlo simulations based on the Gillespie algorithm were performed to find out the RNA folding path. We show using examples the potential of the software developed. / FAPESP: 2012/19377-4. / CNPq: 152838/2012-0
|
3 |
Influência da dinâmica transcricional no dobramento da molécula de RNACosta, Pedro Rafael. January 2016 (has links)
Orientador: Ney Lemke / Resumo: Uma grande variedade de sequências de RNA presentes nos transcriptomas mas com funções ainda desconhecidas tem estimulado o desenvolvimento de técnicas experimentais e computacionais que colaborem na determinação do papel dessas moléculas. Entretanto, a compreensão dos mecanismos de ação de uma dada molécula de RNA envolve não somente a determinação de sua estrutura de mínima energia livre, mas também o estudo do comportamento de suas conformações metaestáveis. Os algoritmos existentes para predição da estrutura de moléculas de RNA ignoram armadilhas cinéticas que podem levar a formação de estruturas subótimas e utilizam modelos termodinâmicos incompletos, muitas vezes ignorando a formação de estruturas mais complexas, como os pseudonós. Nesse trabalho apresentamos um algoritmo para simulação do dobramento cotranscricional para o estudo dos efeitos da conformação espacial da molécula de RNA na cinética da transcrição. A partir da determinação das conformações permitidas, o algoritmo estabelece uma série de reações de transição entre esses estados, com valores das taxas de ocorrência ponderados através de uma distribuição de probabilidade de Boltzmann baseada na variação de energia livre de Gibbs desses estados. As energias livres das estruturas secundárias são determinadas segundo o modelo dos primeiros vizinhos e dois algoritmos foram implementados para o cálculo da energia livre dos pseudonós. Finalmente, simulações de Monte Carlo baseadas no algoritmo de Gillespie foram ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The discovery of a wide variety of RNA sequences present in transcriptomes with unknown function has stimulated the development of experimental and computational techniques to determine the function of these molecules. However, understanding the activities of a given RNA molecule involves not only finding its minimum free energy structure, but also studying its metastable structures. The methodologies available for predicting RNA structure ignore kinetic traps that can lead to formation of suboptimal structures and are based in over-simplified thermodynamic models. These methodologies usually can not predict RNA conformations with more complex topologies, such as pseudoknots. In this work we present a computational model for cotranscriptional folding that considers the influence of RNA structures during transcription elongation. After determining the allowed conformations for the sequence of interest, the algorithm established a series of allowed reactions between these structures. The reactions rates are weighted by the Boltzmann factor based on Gibbs free energy variation between the states. The free energies for secondary structures were estimated by the nearest-neighbor model, and two algorithms were implemented to calculate the free energy of pseudoknots. Finally, Monte Carlo simulations based on the Gillespie algorithm were performed to find out the RNA folding path. We show using examples the potential of the software developed. / Doutor
|
4 |
Fyzické interakce sestřihového faktoru Prp45 / Physical interactions of the splicing factor Prp45Kratochvílová, Eliška January 2015 (has links)
It is well known that chromatin posttranslational state, transcription and splicing influence each other. Nevertheless, the details of this coupling are not fully understood. In S. cerevisiae, it is possible to induce conditions, in which splicing is uncoupled from transcription. Such situation occurred in cells expressing a mutated splicing factor Prp45, whose human homolog has been proved to participate in transcription regulation and also in splicing reactions. Based on previously indicated interactions in high throughput two-hybrid screens, we have been looking for physical links between Prp45 and proteins involved in chromatin posttranslational modifications. Finding of such a link would provide insight into the relationships of gene expression processes. Using coimmunoprecipitation and affinity purification, we were unable to detect physical interactions between Prp45 and our candidate chromatin regulators. Alternative approaches are discussed. Using the precipitation techniques, we mapped the interaction of Prp46 with truncated variants of Prp45. This observation contributes to our knowledge of protein-protein interactions within the spliceosome.
|
Page generated in 0.0842 seconds