• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 80
  • 32
  • 23
  • 23
  • 13
  • 9
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 577
  • 96
  • 53
  • 48
  • 45
  • 43
  • 43
  • 41
  • 37
  • 37
  • 36
  • 36
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

An Enhanced State-of-Charge and State-of-Health Estimation Method Based on Ampere-Hour Counting for Lead-Acid Batteries

Huang, Yao-Feng 12 August 2008 (has links)
This thesis proposes an enhanced ampere-hour counting method based on the depth-of-discharge (DOD) to estimate the state-of-charge (SOC) and state-of-health (SOH) for lead-acid batteries. Not only the losses at different discharging currents, but also the releasable capacity at the exhausted state caused by the larger discharging current are considered and compensated. Furthermore, the SOH is revaluated at the exhausted state by the maximum releasable capacity, consequently leading to more accurate SOC estimation. Through the experiments that emulate practical operations, the experimental results reveal that the maximum error is less than 6 %.
182

Configuration and Operation of Battery Power Modules

NG, Kong-Soon 23 July 2009 (has links)
A novel battery power system configured by the battery power modules (BPMs) is proposed. Each BPM consists of a single battery pack or a battery bank equipped with an associated DC/DC converter. The output ports of BPMs can be connected in series for the high voltage applications, or in parallel to cope with a higher power or energy. For a large scale battery power system, a number of BPMs can be arrayed with combination of series and parallel connections to meet the load requirements. These all configurations allow the BPMs be operated individually. Consequently, the discharging currents of the batteries can be independently controlled, but coordinated to provide a full amount of the load current. The performances of BPMs connected in both parallel and series at outputs are analyzed theoretically and discussed from the experimental results. Batteries operating independently do not suffer from charge imbalance, and thus can avoid being over-charged or over-discharged, so that the life cycle can be prolonged. Furthermore, sophisticated discharging profiles such as intermittent currents can be realized to equalize the charges and thus to efficiently utilize the available stored energy in batteries. During the operation period, some of the batteries may take rest or be isolated from the system for the open-circuit measurement, facilitating the estimation of the state-of-charge (SOC) and the evaluation of the state-of-health (SOH). With the benefit of independent operation, the BPMs can be discharged with a scheduled current profile, such as intermittent discharging. The investigation results show that the average current plays the most important role in current discharging. By detecting the battery voltage at the break time, an SOC estimation method based on the dynamically changed open-circuit voltage exhibits an acceptable accuracy in a shorter time with considerations of the previous charging/discharging currents and the depth-of- discharge (DOD). In addition, the coulomb counting method can be enhanced by evaluating the SOH at the exhausted and fully charged states, which can be intended on the independently operated BPMs. Through the experiments that emulate practical operations, the SOC estimation methods are verified on lead-acid batteries and lithium-ion batteries to demonstrate the effectiveness and accuracy.
183

Nickel-63 microirradiators and applications

Steeb, Jennifer L. 30 June 2010 (has links)
In this thesis, manufacturing of microirradiators, electrodeposition of radioactive elements such as Ni-63, and applications of these radioactive sources are discussed. Ni-63 has a half life of 100 years and a low energy beta electron of 67 keV, ideal for low dose low linear energy transfer (LET) research. The main focus of the research is on the novel Ni-63 microirradiator. It contains a small amount of total activity of radiation but a large flux, allowing the user to safely handle the microirradiator without extensive shielding. This thesis is divided into nine chapters. Properties of microirradiators and various competing radioactive sources are compared in the introduction (chapter 1). Detailed description of manufacturing Ni-63 microirradiator using the microelectrode as the starting point is outlined in chapter 2. The microelectrode is a 25 µm in diameter Pt disk sealed in a pulled 1 mm diameter borosilicate capillary tube, as a protruding wire or recessed disk microelectrode. The electrochemically active surface area of each is verified by cyclic voltammetry. Electrodeposition of nickel with a detailed description of formulation of the electrochemical bath in a cold "non-radioactive setting" was optimized by using parameters as defined by pourbaix diagrams, radioactive electroplating of Ni-63, and incorporation of safety regulations into electrodeposition. Calibration and characterization of the Ni-63 microirradiators as protruding wire and recessed disk microirradiators is presented in chapter 3. In chapters 4 through 6, applications of the Ni-63 microirradiators and wire sources are presented. Chapter 4 provides a radiobiological application of the recessed disk microirradiator and a modified flush microirradiator with osteosarcoma cancer cells. Cells were irradiated with 2000 to 1 Bq, and real time observations of DNA double strand breaks were observed. A novel benchtop detection system for the microirradiators is presented in chapter 5. Ni-63 is most commonly measured by liquid scintillation counters, which are expensive and not easily accessible within a benchtop setting. Results show liquid scintillation measurements overestimates the amount of radiation coming from the recessed disk. A novel 10 µCi Ni-63 electrochemically deposited wire acting as an ambient chemical ionization source for pharmaceutical tablets in mass spectrometry is in chapter 6. Typically, larger radioactive sources (15 mCi) of Ni-63 have been used in an ambient ionization scenario. Additionally, this is the first application of using Ni-63 to ionize in atmosphere pharmaceutical tablets, leading to a possible field portable device. In the last chapters, chapters 7 through 8, previous microirradiator experiments and future work are summarized. Chapter 7 illustrates the prototype of the electrochemically deposited microirradiator, the Te-125 microirradiator. In conjunction with Oak Ridge National Laboratory, Te-125m is a low dose x-ray emitting element determined to be the best first prototype of an electrochemically deposited microirradiator. Manufacturing, characterization, and experiments that were not successful leading to the development of the Ni-63 microirradiator are discussed. In chapter 8, future work is entailed in continuing on with this thesis project. The work presented in the thesis is concluded in chapter 9.
184

Pixel Detectors and Electronics for High Energy Radiation Imaging

Abdalla, Munir January 2001 (has links)
No description available.
185

Automated Quantification of Biological Microstructures Using Unbiased Stereology

Bonam, Om Pavithra 01 January 2011 (has links)
Research in many fields of life and biomedical sciences depends on the microscopic image analysis of biological images. Quantitative analysis of these images is often time-consuming, tedious, and may be prone to subjective bias from the observer and inter /intra observer variations. Systems for automatic analysis developed in the past decade determine various parameters associated with biological tissue, such as the number of cells, object volume and length of fibers to avoid problems with manual collection of microscopic data. Specifically, automatic analysis of biological microstructures using unbiased stereology, a set of approaches designed to avoid all known sources of systematic error, plays a large and growing role in bioscience research. Our aim is to develop an algorithm that automates and increases the throughput of a commercially available, computerized stereology device (Stereologer, Stereology Resource Center, Chester, MD). The current method for estimation of first and second order parameters of biological microstructures requires a trained user to manually select biological objects of interest (cells, fibers etc.) while systematically stepping through the three dimensional volume of a stained tissue section. The present research proposes a three-part method to automate the above process: detect the objects, connect the objects through a z-stack of images (images at varying focal planes) to form a 3D object and finally count the 3D objects. The first step involves detection of objects through learned thresholding or automatic thresholding. Learned thresholding identifies the objects of interest by training on images to obtain the threshold range for objects of interest. Automatic thresholding is performed on gray level images converted from RGB (red-green-blue) microscopic images to detect the objects of interest. Both learned and automatic thresholding are followed by iterative thresholding to separate objects that are close to each other. The second step, linking objects through a z-stack of images involves labeling the objects of interest using connected component analysis and then connecting these labeled objects across the stack of images to produce a 3D object. Finally, the number of linked objects in a 3D volume is counted using the counting rules of stereology. This automatic approach achieves an overall object detection rate of 74%. Thus, these results support the view that automatic image analysis combined with unbiased sampling as well as assumption and model-free geometric probes, provides accurate and efficient quantification of biological objects.
186

Self-assembled quantum dots in advanced structures

Creasey, Megan Elizabeth 09 July 2013 (has links)
Advances in nanofabrication have bolstered the development of new optical devices with potential uses ranging from conventional optoelectronics, such as lasers and solar cells, to novel devices, like single photon or entangled photon sources. Quantum encryption of optical communications, in particular, requires devices that couple efficiently to an optical fiber and emit, on demand, indistinguishable photons. With these goals in mind, ultrafast spectroscopy is used to study the electron dynamics in epitaxially grown InAs/GaAs quantum dots (QDs). Quantifying the behavior of these systems is critical to the development of more efficient devices. Studies of two newly developed InGaAs QD structures, quantum dot clusters (QDCs) and QDs embedded in photonic wires, are presented herein. GaAs photonic wires with diameters in the range of 200 to 250 nm support only the fundamental HE11 guided mode. To fully quantify these new systems, the emission dynamics of QDs contained within wires in a large range of diameters are studied. Time correlated single photon counting measurements of the ground state exciton lifetimes are in very good agreement with predicted theoretical values for the spontaneous emission rates. For diameters smaller than 200 nm, QD emission into the HE11 mode is strongly inhibited and non-radiative processes dominate the decay rate. The best small diameter wires exhibit inhibition factors as high as 16, on par with the current state of the art for photonic crystals. The QDCs are the product of a hybrid growth technique that combines droplet heteroepitaxy with standard Stranski-Krastanov growth to create many different geometries of QDs. The work presented in this dissertation concentrates specifically on hexa-QDCs consisting of six InAs QDs around a GaAs nanomound. The first ever spectral and temporal properties of QDs within individual hexa-QDCs are presented. The QDs exhibit narrow exciton resonances with good temperature stability, indicating that excitons are well confined within individual QDs. A distinct biexponential decay is observed even at the single QD level. This behavior suggests that non-radiative decay mechanisms and exciton occupation of dark states play a significant role in the recombination dynamics in the QDCs. / text
187

Abakus-något att räkna med? : En studie av räkneramen abakus användning bland elever med grav synskada i årskurs 1-6

Eng, Marianne January 2010 (has links)
No description available.
188

Exploiting Structure in Backtracking Algorithms for Propositional and Probabilistic Reasoning

Li, Wei January 2010 (has links)
Boolean propositional satisfiability (SAT) and probabilistic reasoning represent two core problems in AI. Backtracking based algorithms have been applied in both problems. In this thesis, I investigate structure-based techniques for solving real world SAT and Bayesian networks, such as software testing and medical diagnosis instances. When solving a SAT instance using backtracking search, a sequence of decisions must be made as to which variable to branch on or instantiate next. Real world problems are often amenable to a divide-and-conquer strategy where the original instance is decomposed into independent sub-problems. Existing decomposition techniques are based on pre-processing the static structure of the original problem. I propose a dynamic decomposition method based on hypergraph separators. Integrating this dynamic separator decomposition into the variable ordering of a modern SAT solver leads to speedups on large real world SAT problems. Encoding a Bayesian network into a CNF formula and then performing weighted model counting is an effective method for exact probabilistic inference. I present two encodings for improving this approach with noisy-OR and noisy-MAX relations. In our experiments, our new encodings are more space efficient and can speed up the previous best approaches over two orders of magnitude. The ability to solve similar problems incrementally is critical for many probabilistic reasoning problems. My aim is to exploit the similarity of these instances by forwarding structural knowledge learned during the analysis of one instance to the next instance in the sequence. I propose dynamic model counting and extend the dynamic decomposition and caching technique to multiple runs on a series of problems with similar structure. This allows us to perform Bayesian inference incrementally as the evidence, parameter, and structure of the network change. Experimental results show that my approach yields significant improvements over previous model counting approaches on multiple challenging Bayesian network instances.
189

Analytical developments in the use of resemblance measures in community ecology and applications to boreal forest Carabidae

Blanchet, Guillaume Unknown Date
No description available.
190

Using MARS Spectral CT for Identifying Biomedical Nanoparticles

Raja, Aamir Younis January 2013 (has links)
The goal of this research is to contribute to the development of MARS spectral CT and to demonstrate the feasibility of molecular imaging using the technology. MARS is a newly developed micro CT scanner, incorporating the latest spectroscopic Medipix photon counting detector. I show that the scanner can identify both drug markers and stenosis of atherosclerosis labelled with non-toxic nanoparticles. I also show that spectral computed tomography using Medipix x-ray detectors can give quantitative measurements of concentrations of gold nanoparticles in phantoms, mice and excised atheroma. The characterisation of the Medipix2 assemblies with Si and CdTe x-ray sensors using poly-energetic x-ray sources has been performed. I measure the inhomogeneities within the sensors; individual pixel sensitivity response; and their saturation effects at higher photon fluxes. The effects of charge sharing on the performance of Medipix2 have been assessed, showing that it compromises energy resolution much more than spatial resolution. I have commissioned several MARS scanners incorporating several different Medipix2 and Medipix3 cameras. After the characterization of x-ray detectors and the geometrical assessment of MARS-CT, spectral CT data has been acquired, using x-ray energies that are appropriate for human imaging. The outcome shows that MARS scanner has the ability to discriminate among low atomic number materials, and from various concentrations of heavy atoms. This new imaging modality, used with functionalized gold nanoparticles, gives a new tool to assess plaque vulnerability. I demonstrated this by using gold nanoparticles, attached to antibodies, which targeted to thrombotic events in excised plaque. Likewise, the imaging modality can be used to track drugs labelled with any heavy atoms to assess how much drug gets into a target organ. Thus the methodology could be used to accelerate development of new drug treatments for cancers and inflammatory diseases.

Page generated in 0.0571 seconds