Spelling suggestions: "subject:"coupes dde graphe"" "subject:"coupes dee graphe""
1 |
Quelques extensions des level sets et des graph cuts et leurs applications à la segmentation d'images et de vidéosJuan, Olivier 05 1900 (has links) (PDF)
Les techniques de traitement d'image sont maintenant largement répandues dans une grande quantité de domaines: comme l'imagerie médicale, la post-production de films, les jeux... La détection et l'extraction automatique de régions d'intérêt à l'intérieur d'une image, d'un volume ou d'une vidéo est réel challenge puisqu'il représente un point de départ pour un grand nombre d'applications en traitement d'image. Cependant beaucoup de techniques développées pendant ces dernières années et les méthodes de l'état de l'art souffrent de quelques inconvénients: la méthode des ensembles de niveaux fournit seulement un minimum local tandis que la méthode de coupes de graphe vient de la communauté combinatoire et pourrait tirer profit de la spécificité des problèmes de traitement d'image. Dans cette thèse, nous proposons deux prolongements des méthodes précédemment citées afin de réduire ou enlever ces inconvénients. Nous discutons d'abord les méthodes existantes et montrons comment elles sont liées au problème de segmentation via une formulation énergétique. Nous présentons ensuite des perturbations stochastiques a la méthode des ensembles de niveaux et nous établissons un cadre plus générique: les ensembles de niveaux stochastiques (SLS). Plus tard nous fournissons une application directe du SLS à la segmentation d'image et montrons qu'elle fournit une meilleure minimisation des énergies. Fondamentalement, il permet aux contours de s'échapper des minima locaux. Nous proposons ensuite une nouvelle formulation d'un algorithme existant des coupes de graphe afin d'introduire de nouveaux concepts intéressant pour la communauté de traitement d'image: comme l'initialisation de l'algorithme pour l'amélioration de vitesse. Nous fournissons également une nouvelle approche pour l'extraction de couches d'une vidéo par segmentation du mouvement et qui extrait à la fois les couches visibles et cachées présentes.
|
2 |
Segmentation par coupes de graphe avec a priori de forme Application à l'IRM cardiaqueGrosgeorge, Damien 27 May 2014 (has links) (PDF)
Le contourage des ventricules cardiaques sur IRM est nécessaire à la détermination de la fonction contractile du cœur. Cette tâche est difficile, en particulier pour le ventricule droit (VD), due au flou aux frontières des cavités, aux irrégularités des intensités et à sa forme complexe et variable. Peu de travaux ont cependant été réalisés afin de résoudre cette problématique de segmentation. Dans ce but, nous avons proposé et développé deux méthodes de segmentation basées sur la méthode des coupes de graphe (GC), à laquelle nous avons incorporé des a priori de forme. La première méthode, semi-automatique, repose sur une carte d'a priori statistique créée à base d'Analyses en Composantes Principales et intégrée à la méthode des GC binaires. La seconde, automatique, permet la segmentation d'un ensemble d'objets par GC multi-labels à partir d'un modèle de forme probabiliste basé sur le recalage et la fusion d'atlas. Ces méthodes ont été évaluées sur une base importante d'IRM cardiaques, composée de 48 patients. Une comparaison aux méthodes de l'état de l'art pour cette application à travers le challenge de segmentation du VD MICCAI'12, que nous avons organisé, montre l'efficacité de nos méthodes.
|
Page generated in 0.0842 seconds