Spelling suggestions: "subject:"ensembles dde niveau"" "subject:"ensembles dee niveau""
1 |
Ensemble de niveaux robustes au speckle et recalage B-spline application à la segmentation et l'analyse du mouvement cardiaque par des images ultrasons /Mora Cofré, Marco Ayache, Alain January 2008 (has links)
Reproduction de : Thèse de doctorat : Informatique : Toulouse, INPT : 2008. / Titre provenant de l'écran-titre. Bibliogr. 235 réf.
|
2 |
Sur quelques problèmes d'apprentissage supervisé et non superviséLaloë, Thomas 27 November 2009 (has links) (PDF)
L'objectif de cette Thèse est d'apporter une contribution au problème de l'apprentissage statistique, notamment en développant des méthodes pour prendre en compte des données fonctionnelles. Dans la première partie, nous développons une approche de type plus proches voisins pour la régression fonctionnelle. Dans la deuxième, nous étudions les propriétés de la méthode de quantification dans des espaces de dimension infinie. Nous appliquons ensuite cette méthode pour réaliser une étude comportementale de bancs d'anchois. Enfin, la dernière partie est dédiée au problème de l'estimation des ensembles de niveaux de la fonction de régression dans un cadre multivarié.
|
3 |
Contribution à la classification d'images satellitaires par approche variationnelle et équations aux dérivées partielles.Samson, Christophe 26 September 2000 (has links) (PDF)
Ce travail est consacré au développement ainsi qu'à l'implantation de deux modèles variationnels pour la classification d'images. La classification d'images, consistant à attribuer une étiquette à chaque pixel d'une image, concerne de nombreuses applications à partir du moment où cette opération intervient très souvent à la base des chaînes de traitement et d'interprétation d'images. De nombreux modèles de classification ont déjà été développés dans un cadre stochastique ou à travers des approches structurales, mais rarement dans un contexte variationnel qui a déjà montré son efficacité dans divers domaines tels que la reconstruction ou la restauration d'images. Le premier modèle que nous proposons repose sur la minimisation d'une famille de critères dont la suite de solutions converge vers une partition des données composée de classes homogènes séparées par des contours réguliers. Cette approche entre dans le cadre des problèmes à discontinuité libre (free discontinuity problems) et fait appel à des notions de convergence variationnelle telle que la théorie de la ì-convergence. La famille de fonctionnelles que nous proposons de minimiser contient un terme de régularisation, ainsi qu'un terme de classification. Lors de la convergence de cette suite de critères, le modèle change progressivement de comportement en commençant par restaurer l'image avant d'entamer le processus d'étiquetage des pixels. Parallèlement à cette approche, nous avons développé un second modèle de classification mettant en jeu un ensemble de régions et contours actifs. Nous utilisons une approche par ensembles de niveaux pour définir le critère à minimiser, cette approche ayant déjà suscité de nombreux travaux dans le cadre de la segmentation d'images. Chaque classe, et son ensemble de régions et contours associé, est défini à travers une fonction d'ensemble de niveaux. Le critère contient des termes reliés à l'information sur les régions ainsi qu'à l'information sur les contours. Nous aboutissons à la résolution d'un système d'équations aux dérivées partielles couplées et plongées dans un schéma dynamique. L'évolution de chaque région est guidée par un jeu de forces permettant d'obtenir une partition de l'image composée de classes homogènes et dont les frontières sont lisses. Nous avons mené des expériences sur de nombreuses données synthétiques ainsi que sur des images satellitaires SPOT. Nous avons également étendu ces deux modèles au cas de données multispectrales et obtenu des résultats sur des données SPOT XS que nous avons comparé à ceux obtenus par différents modèles.
|
4 |
Quelques extensions des level sets et des graph cuts et leurs applications à la segmentation d'images et de vidéosJuan, Olivier 05 1900 (has links) (PDF)
Les techniques de traitement d'image sont maintenant largement répandues dans une grande quantité de domaines: comme l'imagerie médicale, la post-production de films, les jeux... La détection et l'extraction automatique de régions d'intérêt à l'intérieur d'une image, d'un volume ou d'une vidéo est réel challenge puisqu'il représente un point de départ pour un grand nombre d'applications en traitement d'image. Cependant beaucoup de techniques développées pendant ces dernières années et les méthodes de l'état de l'art souffrent de quelques inconvénients: la méthode des ensembles de niveaux fournit seulement un minimum local tandis que la méthode de coupes de graphe vient de la communauté combinatoire et pourrait tirer profit de la spécificité des problèmes de traitement d'image. Dans cette thèse, nous proposons deux prolongements des méthodes précédemment citées afin de réduire ou enlever ces inconvénients. Nous discutons d'abord les méthodes existantes et montrons comment elles sont liées au problème de segmentation via une formulation énergétique. Nous présentons ensuite des perturbations stochastiques a la méthode des ensembles de niveaux et nous établissons un cadre plus générique: les ensembles de niveaux stochastiques (SLS). Plus tard nous fournissons une application directe du SLS à la segmentation d'image et montrons qu'elle fournit une meilleure minimisation des énergies. Fondamentalement, il permet aux contours de s'échapper des minima locaux. Nous proposons ensuite une nouvelle formulation d'un algorithme existant des coupes de graphe afin d'introduire de nouveaux concepts intéressant pour la communauté de traitement d'image: comme l'initialisation de l'algorithme pour l'amélioration de vitesse. Nous fournissons également une nouvelle approche pour l'extraction de couches d'une vidéo par segmentation du mouvement et qui extrait à la fois les couches visibles et cachées présentes.
|
5 |
Segmentation par contours actifs en imagerie médicale dynamique : application en cardiologie nucléaireDebreuve, Eric 27 October 2000 (has links) (PDF)
En imagerie d'émission, la médecine nucléaire fournit une information fonctionnelle sur l'organe étudié. En imagerie de transmission, elle fournit une information anatomique, destinée par exemple à corriger certains facteurs de dégradation des images d'émission. Qu'il s'agisse d'une image d'émission ou de transmission, il est utile de savoir extraire de façon automatique ou semi-automatique les éléments pertinents : le ou les organes d'intérêt et le pourtour du patient lorsque le champ d'acquisition est large. Voilà le but des méthodes de segmentation. Nous avons développé deux méthodes de segmentation par contours actifs, le point crucial étant la définition de leur vitesse d'évolution. Elles ont été mises en œuvre par les ensembles de niveaux. En premier lieu, nous nous sommes intéressés à l'imagerie statique de transmission de la région thoracique. La vitesse d'évolution, définie heuristiquement, fait directement intervenir les projections acquises. La carte de transmission segmentée, obtenue ainsi sans reconstruction, doit servir à améliorer la correction de l'atténuation photonique subie par les images cardiaques d'émission. Puis nous avons étudié la segmentation des séquences cardiaques -- d'émission -- synchronisées par électrocardiogramme. La méthode de segmentation spatio-temporelle développée résulte de la minimisation d'un critère variationnel exploitant d'un bloc l'ensemble de la séquence. La segmentation obtenue doit servir au calcul de paramètres physiologiques. Nous l'avons illustré en calculant la fraction d'éjection. Pour terminer, nous avons exploité les propriétés des ensembles de niveaux afin de développer une méthode géométrique de recalage, non rigide et non paramétrique. Nous l'avons appliquée à la compensation cinétique des images des séquences cardiaques synchronisées. Les images recalées ont alors été ajoutées de sorte à produire une image dont le niveau de bruit est comparable à celui d'une image cardiaque statique sans toutefois souffrir de flou cinétique.
|
6 |
Estimation des déformations du ventricule gauche sur des séquences ciné-IRM non-marquéesRandrianarisolo, Solofohery 03 March 2009 (has links) (PDF)
Cette thèse présente un nouveau concept pour l'évaluation des déformations cardiaques à partir de ciné-IRM standard sans avoir recours aux images IRM marquées. Nous avons adapté la méthode des ensembles de niveaux afin de segmenter le myocarde et évalué le déplacement des contours endo et épicardique. Le processus de segmentation est appliqué directement sur un ensemble d'images pseudo-volumique 2D + t. Cela conduit à une méthode de segmentation efficace tenant compte à la fois des contraintes de continuité spatiale et temporelle. Puis, nous avons évalué le déplacement des contours endo et épicardique détectés avec une technique de mise en correspondance fondée sur les ensembles de niveaux. La vitesse de déplacement au sein de la paroi myocardique est évaluée par une méthode de flot optique, contrainte avec le déplacement des contours. Enfin, de ce champ de vitesses du myocarde, nous tirons des mesures pertinentes de la contraction cardiaque. La validation de la méthode proposée est effectuée sur des séquences d'images synthétiques, et en comparant sur les mêmes patients nos mesures à celles obtenues avec la méthode de référence HARP appliquée sur des images IRM taggées correspondantes. Les résultats de la méthode sont encourageants, ils sont pratiquement identiques à ceux de l'approche HARP. Cette méthode présente deux avantages principaux: premièrement elle exploite les ciné-IRM standard non taggées, deuxièmement elle permet des évaluations des déformations à haute résolution spatiale. Cette méthode est déjà disponible et peut rendre accessible l'évaluation des déformations du ventricule gauche du myocarde en routine clinique à partir des séquences ciné-IRM
|
7 |
Construction et analyse multifractale de fonctions aléatoires et de leurs graphesJin, Xiong 14 January 2010 (has links) (PDF)
Cette thèse est consacrée à la construction et l'analyse multifractale de fonctions aléatoires et de leurs graphes. La construction de ces objets se fait dans le cadre de la théorie des T-martingales de Kahane, et plus spécifiquement des [0, 1]-martingales. Cette théorie est fréquemment utilisée pour construire des martingales à valeurs dans les mesures de Borel positives dont la limite soit presque sûrement singulière par rapport à la mesure de Lebesgue. Ceci se fait en perturbant cette dernière à l'aide d'une suite de densités aléatoires qui sont des martingales positives d'espérance 1. Ici, nous autorisons ces martingales à prendre des valeurs complexes, et plutôt que des martingales à valeurs dans les mesures, nous considérons des martingales à valeurs dans les fonctions continues à valeurs complexes, puis la question de leur convergence uniforme presque sûre. Nous obtenons une condition suffisante de convergence pour les éléments d'une large classe de [0, 1]-martingales complexes. Les limites non dégénérées sont toutes candidates à être des fonctions multifractales. L'étude de leur nature multifractale révèle de nouvelles diffiultés. Nous la menons de façon complète dans le cas des "cascades b-adiques indépendantes" complexes. Ceci conduit à de nouveaux phénomènes. En particulier, nous construisons des fonctions continues statistiquement autosimilaires dont le spectre de singularité est croissant et entièrement supporté par l'intervalle [0;\infty]. Nous considérons également de nouveaux spectres de singularité associés au graphe, à l'image, ainsi qu'aux ensembles de niveau d'une fonction multifractale f donnée. Ces spectres s'obtiennent de la façon suivante. Soit Eh l'ensemble iso-Hölder de f associé à l'exposant h. Soit h le sous-ensemble du graphe de f obtenu en y relevant Eh. Pour tout h, on cherche la dimension de Hausdorff de h, celle de f(Eh), et celle des ensembles du type h \ Ly, où Ly est l'ensemble de niveau y de f. Pour les cascades b-adiques indépendantes non conservatives à valeurs réelles, nous obtenons presque sûrement les spectres associés au graphe et à l'image, et pour les spectres associés aux ensembles de niveau, nous obtenons un résultat en regardant des lignes de niveau dans "Lebesgue presque toute direction". Enfin, nous considérons les mêmes questions que précédemment pour une autre classe de foncions aléatoires multifractales obtenues comme séries d'ondelettes pondérées par des mesures de Gibbs. Nous obtenons presque sûrement les spectres associés au graphe et à l'image.
|
8 |
Estimation des déformations du ventricule gauche sur des séquences ciné-IRM non-marquées / Estimation of the deformations of the left ventricle on sequences movies-MRI non-markedRandrianarisolo, Solofohery 03 March 2009 (has links)
Cette thèse présente un nouveau concept pour l’évaluation des déformations cardiaques à partir de ciné-IRM standard sans avoir recours aux images IRM marquées. Nous avons adapté la méthode des ensembles de niveaux afin de segmenter le myocarde et évalué le déplacement des contours endo et épicardique. Le processus de segmentation est appliqué directement sur un ensemble d’images pseudo-volumique 2D + t. Cela conduit à une méthode de segmentation efficace tenant compte à la fois des contraintes de continuité spatiale et temporelle. Puis, nous avons évalué le déplacement des contours endo et épicardique détectés avec une technique de mise en correspondance fondée sur les ensembles de niveaux. La vitesse de déplacement au sein de la paroi myocardique est évaluée par une méthode de flot optique, contrainte avec le déplacement des contours. Enfin, de ce champ de vitesses du myocarde, nous tirons des mesures pertinentes de la contraction cardiaque. La validation de la méthode proposée est effectuée sur des séquences d'images synthétiques, et en comparant sur les mêmes patients nos mesures à celles obtenues avec la méthode de référence HARP appliquée sur des images IRM taggées correspondantes. Les résultats de la méthode sont encourageants, ils sont pratiquement identiques à ceux de l’approche HARP. Cette méthode présente deux avantages principaux: premièrement elle exploite les ciné-IRM standard non taggées, deuxièmement elle permet des évaluations des déformations à haute résolution spatiale. Cette méthode est déjà disponible et peut rendre accessible l’évaluation des déformations du ventricule gauche du myocarde en routine clinique à partir des séquences ciné-IRM / This thesis presents a new concept for the assessment of cardiac deformation from standard cine-MRI without requiring tagged MRI. We have adapted the level set method to segment the myocardium and to evaluate the endocardial and epicardial velocity contours. The segmentation process is directly applied on a pseudo-volumic 2D+t set of images. This leads to an efficient segmentation method that both take into account spatial and temporal continuity constraints. Then, we evaluated the displacement of detected endocardial and epicardial contours by a levelset based matching procedure. The velocity flow in the myocardial wall is assessed by an optical flow method constrained with the contour displacement. Finally, from the velocity flow, we derive relevant measurements of the cardiac contraction. The validation of the method is performed on synthetic image sequences, and by comparing our measurements to those obtained on the same patients with the HARmonic Phase reference (HARP) method applied on matched tagged MR images. The results of this method are encouraging, they are practically identical to those HARP approach. This method presents two main advantages: first it exploits standard untagged cine-MRI, secondly it leads to high spatial resolution strain assessments. This method is readily available and has potential to make the assessment of left ventricular myocardial deformation accessible for clinical use from a set of cardiac cine MR acquisitions
|
9 |
Modèles de contours actifs basés régions pour la segmentation d'images et de vidéosJehan-Besson, Stéphanie 06 January 2003 (has links) (PDF)
L'objectif de cette thèse est l'élaboration de modèles de contours actifs basés régions pour la segmentation d'images et de vidéos.<br />Nous proposons de segmenter les régions ou objets en minimisant une fonctionnelle composée d'intégrales de régions et d'intégrales de contours. Dans ce cadre de travail, les fonctions caractérisant les régions ou les contours sont appelées "descripteurs''. La recherche du minimum se fait via la propagation d'un contour actif dit basé régions. L'équation d'évolution associée est calculée en utilisant les outils de dérivation de domaines. Par ailleurs, nous prenons en compte le cas des descripteurs dépendant de la région qui évoluent au cours de la propagation du contour. Nous montrons que cette dépendance induit des termes supplémentaires dans l'équation d'évolution.<br /><br />Le cadre de travail développé est ensuite mis en oeuvre pour des applications variées de segmentation. Tout d'abord, des descripteurs statistiques basés sur le déterminant de la matrice de covariance sont étudiés pour la segmentation du visage. L'estimation des paramètres statistiques se fait conjointement à la segmentation. Nous proposons ensuite des descripteurs statistiques utilisant une distance à un histogramme de référence. Enfin, la détection des objets en mouvement dans les séquences à caméra fixe et mobile est opérée via l'utilisation hierarchique de descripteurs basés mouvement et de descripteurs spatiaux.
|
10 |
Méthodes par ensembles de niveaux et modes conditionnels itérés pour la segmentation vidéoRanchin, Florent 10 December 2004 (has links) (PDF)
Cette thèse est consacrée à l'étude d'un problème de vision par ordinateur et de deux problèmes de vidéo surveillance. Nous proposons une méthode de détection d'objets en mouvement dans une séquence vidéo basée sur une détermination préalable du mouvement apparent et sur un problème d'optimisation de forme. Pour d'autres modèles de détection et de suivi d'objets en mouvement, nous proposons d'appliquer l'algorithme discret des modes conditionnels itérés réputé très rapide et qui permet de réduire le temps de calcul des algorithmes continus lorsqu'il leur est combiné. En vidéo surveillance, on cherche d'une part à estimer la densité d'une foule et d'autre part à détecter des comportements anormaux dans l'environnement du métro parisien. Nous proposons une estimation de la densité d'une foule basée sur un calcul de courbure sur l'image. La détection de comportements anormaux s'effectue par une recherche des modes dans l'histogramme des directions du mouvement apparent.
|
Page generated in 0.1006 seconds