• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude expérimentale de la formation des biofilms sous conditions hydrodynamiques contrôlées / Experimental study of biofilm formation under controlled hydrodynamic conditions

Medeiros, Ana Cecilia de Andrade Pinho 02 March 2016 (has links)
En milieu aquatique, 90% des microorganismes se présentent sous forme de biofilm plutôt que dans un état planctonique. Les biofilms peuvent se former sur la plupart des surfaces humides, en particulier, les milieux poreux en raison de leur grande surface spécifique. La formation du biofilm dans les milieux poreux représente un domaine précieux pour la recherche scientifique en raison de sa pertinence pour de nombreux processus industriels, telles que le traitement des eaux, la bio-médiation des sols, la récupération du pétrole et le stockage du CO2. Cependant, le développement du biofilm n’est pas simplement une agrégation passive de cellules, il implique des interactions biologiques, physiques et chimiques avec le microenvironnement. Les études macroscopiques ont démontré que les conditions hydrodynamiques dans les milieux poreux jouent un rôle décisif sur la dynamique d'accumulation des biofilms, ce qui influence à son tour les propriétés hydrodynamiques comme la porosité, la perméabilité et la chute de pression. Dans cette thèse nous avons mis au point une méthodologie et un dispositif expérimental permettant la caractérisation de la structure d’un biofilm.A partir de cette procédure, une étude expérimentale sur l’influence de l’écoulement sur la formation et la structure des biofilms a été effectuée sur une souche bactérienne Pseudomonas putida. Les biofilms sont développés dans des micros cellules d’écoulement de type Hèle-Shaw (en PDMS ou PMMA) et alimentés en continue avec un milieu nutritif. La caractérisation de la colonisation avant croissance du biofilm a été également réalisée afin de pouvoir caractériser la variabilité statistique et la reproductibilité des expériences. La formation du biofilm sur un support solide dans un écoulement cisaillé a été évaluée après 24h, 48h et 72h de développement pour deux conditions hydrodynamiques, Re=0.04 (0.0021 Pa) et Re=2 (0.094 Pa). Les observations ont été effectuées sous microscope confocal à l’aide de marqueurs fluorescents. Des images 2D sont prises en différentes positions puis sont utilisées pour effectuer une reconstruction 3D du biofilm avec l’évaluation la distribution spatiale sur une zone de 12*12mm². Nous avons ensuite mis en évidence que les biofilms formés sont peu sensibles aux conditions de colonisation initiales. Nous avons également observé une stratification du biofilm selon la hauteur. La couche interne présente une faible épaisseur (5~10 µm) mais avec une structure dense, tant dis que la couche externe présente plutôt une structure filamenteuse. Le rapport des fractions volumiques entre ces deux couches peut varier de 3 jusqu’à 12, selon le temps de formation. Cet écart est autant plus important pour le cas de faible cisaillement que celui de fort cisaillement. Ceci montre que la partie supérieure du biofilm semble être contrôlée par les conditions hydrodynamiques. En analysant la distribution spatiale du biofilm, nous avons constaté une forte hétérogénéité après 48h de développement présente dans la structure, ainsi qu’une diminution de la fraction volumique de la biomasse après 72h, pour les deux conditions hydrodynamiques imposées. Ceci évoque de probables détachements ou des érosions du biofilm. A propos de la cinétique de croissance, on constate un taux de croissance apparent différents pour chaque temps d’observation. Ces valeurs sont largement inférieures aux taux de croissance observé en culture libre. Ce résultat indique également un possible effet de l’hydrodynamique sur la croissance du biofilm. Cette étude nous permet, à partir des mesures à l’échelle microscopique, d’obtenir des informations sur la structure et le taux de croissance apparent du biofilm, ainsi que l’effet de l’hydrodynamique sur ses propriétés à l’échelle de quelques pores. Ce changement d’échelle, permettra à terme de développer des outils pour simuler et/ou modéliser l’évolution de la morphologie et la distribution spatiale d’un biofilm dans un milieu poreux. / In the aquatic environment, 90% of microorganisms are present as a biofilm rather than free-swimming cells. Biofilms may develop on most of humid surfaces, in particular, in porous media for their high specific surface area. Biofilm formation in porous media is very interesting subject for many scientific researchers, because of its relevance to many industrial processes such as water treatment, soil bio- mediation, oil recovery and CO2 storage. However, the development of the biofilm is not just a passive aggregation of bacteria cells. It involves biological, physical and chemical interactions with the bacteria’s micro-environment. Several studies in macroscopic scale have shown that hydrodynamic conditions in porous media play an essential role on the dynamics of biofilm growth, which in turn affects hydrodynamic properties of porous media such as porosity, permeability and pressure drop. In this thesis we have developed an experimental device and an appropriate methodology for the characterization of biofilm’s structure. An experimental study on the influence of fluid flow on the formation and structure of biofilms was performed using a bacterial strain Pseudomonas putida. Biofilms were grown in micro Hele-Shaw flow cell (in PDMS or PMMA) under laminar flows (Re=0.04~2) and fed continuously with a nutrient medium. Characterization of initial colonization was also carried out in order to examine the statistical variability and reproducibility of experiments. Biofilm formation on a solid support under a sheared flow (Re=0.04 (0.0021 Pa) and Re = 2 (0.094 Pa)) was evaluated after 24, 48 and 72h of development. Observations were made under a confocal laser scanning microscopes using fluorescent tag. 2D images were taken at different positions in the flow cell and used to perform a 3D reconstruction of biofilm’s structure and an evaluation of its spatial distribution for an observation area of 12 *12mm². The results show that biofilms formation is not sensitive to initial colonization. A stratification of biofilm was also observed. The inner layer has a thin thickness (5~10 µm), but with a dense structure, while the outer layer show rather a filamentous structure. The ratio of volume fractions between these two layers varies from 3 to 12, depending on the formation time. This difference is more important in the case of low shear stress than that of high shear stress, which means that the upper part of the biofilm seems to be controlled by the hydrodynamic conditions. By analyzing the spatial distribution of the biomass, we found that after 48h, the biofilm present a significant heterogeneity and the volume fraction of biomass decreases after 72h for both two hydrodynamic conditions, which suggests probable detachments or erosions of biofilm. Concerning the growth kinetics, different apparent growth rates were observed for each observation time. These values are significantly below the growth rates observed in free culture medium. This result also indicates a possible effect of hydrodynamics on the growth of biofilm. This experimental study of biofilm formation in micro-scale allowed us to obtain the information on the biofilm structural and its apparent growth rate, as well as the hydrodynamic effect on its properties across several pores of the porous media. This scaling up makes it’s possible to develop eventually mathematical models to simulate the evolution biofilm’s morphology and its spatial distribution in the porous medium.
2

ÉMISSION DE GAZ A EFFET DE SERRE (CO2, CH4) PAR UNE RETENUE DE BARRAGE HYDROÉLECTRIQUE EN ZONE TROPICALE (PETIT-SAUT, GUYANE FRANÇAISE) :<br />EXPÉRIMENTATION ET MODÉLISATION

Guérin, Frédéric 13 February 2006 (has links) (PDF)
Les émissions de dioxyde de carbone (CO2) et de méthane (CH4) et le cycle du carbone dans la retenue de barrage de Petit-Saut et la rivière Sinnamary (Guyane Française) ont été étudiés dans le but de développer un modèle couplé hydrodynamique-biogéochimie. Le développement de ce modèle a nécessité l'étude de trois processus contrôlant ces émissions : (i) la production de CO2 et de CH4 lors de la dégradation de la matière organique (MO) des sols et de végétaux, (ii) l'oxydation aérobie du CH4 dans la colonne d'eau du barrage et (iii) les processus d'échange gazeux à l'interface air-eau.<br />Sur 10 ans, les émissions atmosphériques se sont avérées très significatives, notamment les trois premières années ayant suivies la mise en eau, puis décroissent au cours du temps. Tandis que 50% des émissions de CO2 ont lieu à la surface du lac, les émissions de CH4 sont principalement localisées en aval des turbines. <br />Les émissions atmosphériques résultent de la dégradation de la MO (sol et biomasse issus de la forêt tropicale) immergée lors de la mise en eau et leur diminution au cours du temps découle de l'épuisement du stock de MO. Au terme de 10 ans, 20% du stock de carbone a été minéralisé et émis vers l'atmosphère sous forme de CO2 et de CH4. L'oxydation aérobie du CH4 transforme plus de 95% du CH4 diffusant depuis l'hypolimnion en CO2 dans la colonne d'eau du lac et 40% du CH4 entrant dans la rivière à l'aval. A l'échelle du barrage ce processus est responsable de l'oxydation de 90% du CH4 produit et de 30% des émissions totales de CO2. Le CH4 et le CO2 qui atteignent les eaux de surface du barrage sont émis vers l'atmosphère par flux diffusifs. L'étude de ce processus de transfert gazeux à l'interface air-eau montre que, en milieu tropical, les flux diffusifs sont accélérés par les fortes températures et les phénomènes pluvieux.<br />Le modèle est basé sur le modèle hydrodynamique SYMPHONIE 2D et les modules biogéochimiques développés dans le cadre de cette étude à partir des données cinétiques des processus étudiés. Les profils verticaux simulés de température, d'oxygène, de CO2 et de CH4 sont bien reproduits. Ce modèle pose les bases d'un outil opérationnel de modélisation pour la retenue de Petit Saut ainsi que pour d'autres réservoirs en milieu tropical.
3

Modélisation, simulation et assimilation de données autour d'un problème de couplage hydrodynamique-biologie

Boulanger, Anne-Céline 13 September 2013 (has links) (PDF)
Les sujets abordés dans cette thèse s'articulent autour de la modélisation numérique du couplage entre l'hydrodynamique et la biologie pour la culture industrielle de microalgues dans des raceways. Ceci est fait au moyen d'un modèle multicouches qui disrétise verticalement les équations de Navier-Stokes hydrostatiques couplé avec un modèle de Droop photosensible pour représenter la croissance des algues, notamment la production de carbone. D'un point de vue numérique, une méthode volumes finis avec schémas cinétiques est appliquée. Elle permet d'obtenir un schéma équilibre qui préserve la positivité de la hauteur d'eau et des quantités biologiques et qui satisfait une inégalité d'énergie. Des simulations sont effectuées en 2D et en 3D, au moyen d'un code C++ développé à cet effet. Du point de vue de l'intérêt pratique de ce travail, ces simulations ont permis de mettre en évidence l'utilité de la roue à aube présente dans les raceways, mais aussi d'exhiber les trajectoires lagrangiennes réalisées par les microalgues, qui permettent de connaitre l'historique lumineux des algues, information d'une grande importance pour les biologistes car elle leur permet d'adapter leurs modèles de croissance phytoplanctoniques à ce contexte très particulier et non naturel. Afin de valider les modèles et les stratégies numériques employées, deux pistes on été explorées. La première consiste à proposer des solutions analytiques pour les équations d'Euler à surface libre, ainsi qu'un modèle biologique spécifique permettant un couplage analytique. La deuxième consiste à faire de l'assimilation de données. Afin de tirer partie de la description cinétique des lois de conservation hyperboliques, une méthode innovante basée sur la construction d'un observateur de Luenberger au niveau cinétique est développée. Elle permet d'obtenir un cadre théorique intéressant pour les lois de conservation scalaires, pour lesquelles on étudie les cas d'observations complètes, partielles en temps, en espace, et bruitées. Pour les systèmes, on se concentre particulièrement sur le système de Saint-Venant, système hyperbolique non linéaire et un observateur basé sur l'observation des hauteurs d'eau uniquement est construit. Des simulations numériques dans les cas scalaires et systèmes, en 1D et 2D sont effectuées et valident l'efficacité de la méthode.

Page generated in 0.0675 seconds