• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coupled and Uncoupled Earth Pressure Profiles in Unsaturated Soils under Transient Flow

Andrabi, Syed Gous 09 December 2016 (has links)
The main goal of this research is to evaluate the behavior of earth pressure profiles in unsaturated soils under transient flow. In the first part, an empirical correlation is proposed to obtain the fitting parameters of Brooks and Corey’s soil-water retention model from Fredlund and Xing’s model. The retention models and the proposed equivalency between the models were assessed for 601 soil samples from the unsaturated soils hydraulic database (UNSODA). In the second part, a coupled one-dimensional hydro-mechanical model is introduced and is implemented into Rankine’s earth-pressure model to represent active and passive earth pressure profiles in unsaturated soils under transient flow. A realistic coupling process of infiltration and deformation in the porous medium is established based on the variation in permeability along with deformation in the soil body. The results showed that ignoring the hydro-mechanical coupling effect can lead to underestimation of earth pressure values, especially for fine-grained soils.
2

Three-Dimensional Finite Element Analysis of the Pile Foundation Behavior in Unsaturated Expansive Soil

Wu, Xingyi 22 April 2021 (has links)
Expansive soils, which are widely referred to as problematic soils are extensively found in many countries of the world, especially in semi-arid and arid regions. Several billions of dollars are spent annually for maintenance or for repairs to the structures constructed with and within expansive soils. The major problems of expansive soils can be attributed to the volume changes associated with the alternate wetting and drying conditions due to the influence of environmental factors. Pile foundations have been widely accepted by practicing engineers as a reasonably good solution to reduce the damages to the structures constructed on expansive soils. Typically, piles foundations are extended through the active layer of expansive soil to reach the bedrock or placed on a soil-bearing stratum of good quality. Such a design and construction approach typically facilitates pile foundations to safely carry the loads from the superstructures and reduce the settlement. However, in many scenarios, damages associated with the pile foundations are due to the expansion of the soil that is predominantly in the active zone that contributes to the pile uplift. Such a behavior can be attributed to the water infiltration into the expansive soil, which is a key factor that is associated with the soil swelling. Due to this phenomenon, expansive soil typically moves upward with respect to the pile. This generates extra positive friction on the pile because of the relative deformation. If the superstructure is light or the applied normal stress on the head of the piles is not significant, it is likely that there will be an uplift of the pile contributing to the damage of the superstructure. In conventional engineering practice, the traditional design methods that include the rigid pile method and the elastic pile method are the most acceptable in pile foundation design. These methods are typically based on a computational technique that uses simplified assumptions with respect to soil and water content profile and the stiffness and shear strength properties. In other words, the traditional design method has limitations, as they do not take account of the complex hydromechanical behavior of the in-situ expansive soils. With the recent developments, it is possible to alleviate these limitations by using numerical modeling techniques such as finite element methods. In this thesis, a three-dimensional finite element method was used to study the hydro-mechanical behavior of a single pile in expansive soils during the infiltration process. In this thesis, a coupled hydro-mechanical model for the unsaturated expansive soil is implemented into Abaqus software for analysis of the behavior of single piles in expansive soils during water infiltration. A rigorous continuum mechanics based approach in terms of two independent stress state variables; namely, net normal stress and suction are used to form two three-dimensional constitutive surfaces for describing the changes in the void ratio and water content of unsaturated expansive soils. The elasticity parameters for soil structure and water content in unsaturated soil were obtained by differentiating the mathematical equations of constitutive surfaces. The seepage and stress-deformation of expansive soil are described by the coupled hydro-mechanical model and the Darcy’s law. To develop the subroutines, the coupled hydro-mechanical model is transferred into the coupled thermal-mechanical model. Five user-material subroutines are used in this program. The user-defined field subroutine (USDFILD) in Abaqus is used to change and transfer parameters. Three subroutines including user-defined material subroutine (UMAT), user-defined thermal material subroutine (UMATHT), and user-defined thermal expansion subroutine (UEXPAN) are developed and used to calculate the stress-deformation, the hydraulic behavior, and the expansion strain, respectively. Except for the coupled hydro-mechanical model of unsaturated expansive soils, a soil-structure interface model is implemented into the user-defined friction behavior subroutine (FRIC) to calculate the friction between soil and pile. The program is verified by using an experimental study on a single pile in Regina clay. The results show that for the single pile in expansive soil under a vertical load, water infiltration can cause a reduction in the pile shaft friction. More pile head load is transferred to the pile at greater depth, which increases the pile head settlement and pile base resistance. In future, the proposed method can also be extended for verification of other case studies from the literature. In addition, complex scenarios can be investigated to understand the behavior of piles in expansive soils.
3

Strength and deformability of fractured rocks

Noorian-Bidgoli, Majid January 2014 (has links)
This thesis presents a systematic numerical modeling framework to simulate the stress-deformation and coupled stress-deformation-flow processes by performing uniaxial and biaxial compressive tests on fractured rock models with considering the effects of different loading conditions, different loading directions (anisotropy), and coupled hydro-mechanical processes for evaluating strength and deformability behavior of fractured rocks. By using code UDEC of discrete element method (DEM), a series of numerical experiments were conducted on discrete fracture network models (DFN) at an established representative elementary volume (REV), based on realistic geometrical and mechanical data of fracture systems from field mapping at Sellafield, UK. The results were used to estimate the equivalent Young’s modulus and Poisson’s ratio and to fit the Mohr-Coulomb and Hoek-Brown failure criteria, represented by equivalent material properties defining these two criteria. The results demonstrate that strength and deformation parameters of fractured rocks are dependent on confining pressures, loading directions, water pressure, and mechanical and hydraulic boundary conditions. Fractured rocks behave nonlinearly, represented by their elasto-plastic behavior with a strain hardening trend. Fluid flow analysis in fractured rocks under hydro-mechanical loading conditions show an important impact of water pressure on the strength and deformability parameters of fractured rocks, due to the effective stress phenomenon, but the values of stress and strength reduction may or may not equal to the magnitude of water pressure, due to the influence of fracture system complexity. Stochastic analysis indicates that the strength and deformation properties of fractured rocks have ranges of values instead of fixed values, hence such analyses should be considered especially in cases where there is significant scatter in the rock and fracture parameters. These scientific achievements can improve our understanding of fractured rocks’ hydro-mechanical behavior and are useful for the design of large-scale in-situ experiments with large volumes of fractured rocks, considering coupled stress-deformation-flow processes in engineering practice. / <p>QC 20141111</p>
4

Fluid Flow in Fractured Rocks: Analysis and Modeling

He, Xupeng 05 1900 (has links)
The vast majority of oil and gas reserves are trapped in fractured carbonate reservoirs. Most carbonate reservoirs are naturally fractured, with fractures ranging from millimeter- to kilometer-scale. These fractures create complex flow behaviors which impact reservoir characterization, production performance, and, eventually, total recovery. As we know, bridging the gas from plug to near-wellbore, eventually to field scales, is a persisting challenge in modeling Naturally Fractured Reservoirs (NFRs). This dissertation will focus on assessing the fundamental flow mechanisms in fractured rocks at the plug scale, understanding the governing upscaling parameters, and ultimately, developing fit-for-purpose upscaling tools for field-scale implementation. In this dissertation, we first focus on the upscaling of rock fractures under the laminar flow regime. A novel analytical model is presented by incorporating the effects of normal aperture, roughness, and tortuosity. We then investigate the stress-dependent hydraulic behaviors of rock fractures. A new and generalized theoretical model is derived and verified by a dataset collected from public experimental resources. In addition, an efficient coupled flow-geomechanics algorithm is developed to further validate the proposed analytical model. The physics of matrix-fracture interaction and fluid leakage is modeled by a high-resolution, micro-continuum approach, called extended Darcy-Brinkman-Stokes (DBS) equations. We observe the back-flow phenomena for the first time. Machine learning is then implemented into our traditional upscaling work under complex physics (e.g., initial and Klinkenberg effects). We finally consolidate the lab-scale upscaling tools and scale them up to the field scale. We develop a fully coupled hydro-mechanical model based on the Discrete-Fracture Model (DFM) in fractured reservoirs, in which we incorporate localized effects of fracture roughness at the field-scale.

Page generated in 0.0614 seconds