• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théorèmes de Petri pour les courbes stables et dégénérescence du système d'équation du plongement canonique

Dodane, Olivier 18 June 2009 (has links) (PDF)
Le théorème de Petri affirme que l'image canonique d'une courbe lisse non hyperelliptique de genre g>=4 définie sur un corps algébriquement clos est une intersection d'hypersurfaces quadriques et cubiques. De plus, on peut exhiber un système d'équations pour cette image; il s'agit ici de résultats de Petri (1923) transcrits dans le langage moderne par Saint-Donat (1973). On sait par ailleurs que l'espace des modules des courbes lisses n'est pas propre, son bord étant constitué des courbes stables. C'est pourquoi il est naturel de chercher des énoncés similaires valables pour les courbes stables et d'examiner la dégénérescence du système d'équations d'une courbe lisse vers une courbe stable. <br />Dans cette thèse, on envisage d'une part le cas d'une courbe stable ayant un seul point double ordinaire et dont la normalisée est hyperelliptique, et d'autre part le cas d'une courbe stable dont le graphe est planaire. De plus, on entreprend l'étude du plongement canonique d'une courbe stable définie sur un anneau de valuation discrète. Quel que soit le contexte, la méthode employée pour aboutir à des théorèmes de Petri est la suivante:<br />-- description du faisceau canonique et construction d'une base bien adaptée de l'espace de ses sections globales; <br />-- construction de quadriques et cubiques dans l'idéal canonique;<br />-- démonstration que ces éléments engendrent l'idéal canonique.<br /><br />Ce mémoire contient également de nouveaux éléments biographiques concernant le mathématicien allemand Karl Petri.

Page generated in 0.0576 seconds