1 |
Effect of cracks on the transport characteristics of cracked concrete2014 April 1900 (has links)
Cracks in reinforced concrete structures can occur as a result of many phenomena such as fresh concrete bleeding, restrained shrinkage, thermal gradients, freeze-thaw cycles, alkali-aggregate reactions, and can also be induced by external loading. Thus, concrete becomes more vulnerable to the processes of deterioration by corrosion of reinforcement. The corrosion rate of cracked reinforced concrete in different exposure conditions has been studied by some researchers. However, it is not clear how the presence of cracks affects the corrosion-determining factors, which control the corrosion pattern at the crack. The objective of this project was to develop an understanding of the effects of cracking on the transport characteristics under wetting and drying cycles.
In this project, flexural loading induced natural cracks, and parallel-wall artificial cracks were studied. The infiltration properties of those cracks were evaluated by the tension infiltrometry technique. The saturation conditions around the crack were monitored with the Time Domain Reflectometry (TDR) technique. A numerical simulation was carried out to model the evolution of saturation in the cracked beams; in the model two crack modeling approaches were employed and compared.
The infiltration test showed that the presence of both artificial and natural cracks (0.3 mm and 1.0 mm) dramatically increased the permeability of concrete. The value of hydraulic conductivity was increased by up to 5 orders of magnitude at the location of the crack.
The evolution of water saturation of the cracked concrete under wetting and drying conditions was analyzed as colour-scaled images and the water saturation contours were compared for different crack openings. For the artificial crack samples, a deviation from the expected “perfectly symmetric” flow regime around a straight crack was observed. This was probably caused by the micro cracks induced during the shim pull-out process or a non-uniform compaction around the shim insertion. For the natural cracks, in the drying phase, smaller cracks seemed to have better water storage. Hence, the water saturation decreased at a slightly slower rate. The crack behaved like an open surface that was exposed to the environment. Application of the same material properties to the open surface and the crack surface did not bring a large error for the water flow simulations.
A hysteresis phenomenon has been found during the identification of the Van Genuchten material parameters using an inverse modelling approach, with Ks=5×10-10 m/s, α =4.33×10-4, for the wetting phase, n=1.32 and for the drying phase, n=2.0.
The simulation results suggest that for the simple flexural crack, the 1D crack line averaged from the front and back crack lines is capable of representing the crack in the wetting and drying scenario. The crack could be modelled as “free surface” or “equivalent porous medium”.
|
2 |
Transfert d'un composé organo-chloré depuis une zone source localisée en zone non saturée d'un aquifère poreux vers l'interface sol-air : expérimentations et modélisations associées / Transfer of an organo-chlorinated compound from a source area located in the unsaturated zone of a porous aquifer to the soil-air interface : experiments and modelling relatedMarzougui Jaafar, Salsabil 29 January 2013 (has links)
Deux expériences ont été menées sur la plate-forme expérimentale "SCERES" afin d'évaluer les concentrations et les flux de vapeurs de TCE dans SCERES en présence de deux dalles de béton fissurées installées, l'une après l'autre, à la surface de SCERES. Cet aquifère poreux est un milieu hétérogène de grande échelle (25 x 12 x 3 m3). Les résultats ont montré que le panache de vapeur de TCE couvre la plupart du bassin au bout de 3 semaines depuis la création de la zone source de TCE dans le sous sol. L'hétérogénéité du site SCERES a engendrée une distribution verticale non uniforme de la concentration de vapeurs de TCE. La simulation du panache de vapeur dans SCERES a été effectuée au moyen du code de calcul multiphasique "SIMUSCOPP". La présence sur SCERES de la dalle de béton, un milieu peu perméable et peu diffusif, a constitué une "barrière" en vue du transfert de vapeurs de TCE vers l'interface dalle/atmosphère. Afin de mieux quantifier le flux de vapeurs à travers la dalle de béton, une étude de coefficient de diffusion et de perméabilité des deux dalles a été réalisée. Un mouvement vertical ascendant du toit de la nappe a généré un fort gradient de pression motrice de l'air du sol. Ceci a engendré une forte augmentation des flux de vapeurs à l'interface sol/atmosphère. La quantification de ces flux de vapeurs a été effectuée à l'aide d'une solution semi analytique basée sur la loi de Fick et la loi de Darcy en tenant compte à la fois de l'effet de gradient de pression motrice et l'effet de densité de vapeurs sur le transfert de vapeurs vers la surface du sol. L'intrusion de vapeurs de TCE dans le bâtiment modèle, installé sur la dalle de béton, a été générée par une mise en dépression dans ce dernier. Ce qui a fait augmenter la concentration de vapeurs de TCE sous la dalle ainsi dans le bâtiment. La simulation de l'intrusion de vapeurs dans l'air intérieur de bâtiment a été réalisée par l'intermédiaire du code de calcul multiphysics "COMSOL", avec lequel nous avons démontré l'évolution de la concentration de vapeurs obtenues expérimentalement dans le bâtiment et qui dépend directement de la variation spatio-temporelle du flux massique à travers la dalle. / Two experiments were conducted on the experimental platform "SCERES" to assess the TCE vapour concentrations and fluxes in SCERES with two concrete slabs installed, one after the other, on the ground surface. This artificial aquifer is a large scale (25 x 12 x 3 m3) heterogeneous porous medium. The results showed that the TCE vapour plume covers most of the basin 3 weeks after the creation of the TCE source area in unsaturated zone. The heterogeneity of SCERES has generated a non uniform vertical distribution of the TCE vapour concentration. Simulation of vapour plume in SCERES was carried out by the multiphase code "SIMUSCOPP".The presence in SCERES of a low permeability and low diffusive medium compared to the sand in the basin,as a concrete slab, constituted a "barrier" for the transfer of TCE vapour to the interface concrete slab / atmosphere. To better quantify the TOE fluxes through the concrete slab, a study of diffusion coefficient and permeability of both concrete slabs was done. An upward vertical movement of the water table has generated a strong soil air pressure driving gradient, which led to a strong increase in the TCE vapour concentrations near the surface which has increased the vapour fluxes at the interface soil / atmosphere. Quantification of vapour fluxes at the interfaces soil / atmosphere and concrete slab / atmosphere was performed using a semi analytical approach based onFick's and Darcy's laws by taking into account both the effect of the driving pressure gradient and the effect of density vapour on the vapour transfer towards the soil surface.The intrusion of TCE vapours into the model building installed on the concrete slab was generated by creating a vacuum. The results showed that, during the TCE vapour suction from the model building, the concentration of TCE vapours under the concrete slab and in the building increases. Simulation of vapour intrusion into indoor air was done by the computational Multiphysics code "COMSOL", allowing simulation of the evolution of the vapour concentration obtained experimentally in the building. Il was shown that they depend directly on the spatial-temporal variation of the mass flux through the slab.
|
3 |
Étude numérique méso-macro des propriétés de transfert des bétons fissurés / Meso-macro numerical study of the transfert properties of cracked concreteJourdain, Xavier 15 December 2014 (has links)
La durabilité des structures en béton est désormais intégrée dans la démarche de conception des ouvrages de Génie Civil. En effet, quel que soit le type de sollicitation (mécanique, thermique, hydrique) une fissuration est susceptible de se produire risquant d'impacter la durée de vie de l'ouvrage par la pénétration d'agents agressifs. L'aptitude au service peut elle-même être affectée pour les structures où une étanchéité est requise (enceinte de confinement de centrales nucléaires, réservoirs de gaz naturel liquéfié, barrages, stockages des déchets radioactifs ou de CO2, etc.). Dans ce contexte industriel, la prédiction du débit de fuite traversant des éléments composés de matériaux à base cimentaire est donc un enjeu scientifique et industriel majeur. Pour parvenir à cet objectif de simulation numérique, il est nécessaire de mettre en place un couplage hydro-mécanique. L'anisotropie de la fissuration induite par les sollicitations mécaniques complexes conduit à un tenseur de perméabilité macroscopique anisotrope. La détermination de ce tenseur est un enjeu important dans l'objectif de mener des calculs à l'échelle macroscopique avec des modèles phénoménologiques. De plus, les calculs de perméabilité sont un moyen de comparer les volumes fissurés obtenus par les différents modèles mécaniques. La modélisation de la fissuration pour les matériaux quasi-fragiles hétérogènes à l'échelle mésoscopique tels que le béton est complexe et suivant les approches utilisées, les résultats peuvent fortement varier. C'est pourquoi l'étude numérique proposée dans la thèse comporte une comparaison entre deux approches mécaniques : - une première basée sur une modélisation mécanique de type E-FEM (Embedded Finite Element Method) [Benkemoun et al., 2010] - - une seconde basée sur une modélisation mécanique d'endommagement [Mazars, 1984] régularisée en énergie de fissuration [Hillerborg et al., 1976]. Le travail numérique associé à cette thèse consiste donc à développer un modèle couplant de manière faible un modèle mécanique à un modèle de transfert en 3D à l'échelle mésoscopique. En se basant sur le concept de « double porosité », la perméabilité du milieu fissuré est vue comme la combinaison d'une perméabilité diffuse et isotrope (liée au réseau poreux initial du béton et à son degré de saturation) et d'une perméabilité « discrète » et orientée au sein des fissures (le calcul de cette dernière étant basé sur les ouvertures de fissures données par le modèle mécanique et sur les équations de la mécanique des Navier-Stokes en régime permanent). La comparaison des résultats obtenus sur différents résultats expérimentaux issus de la littérature (un tirant traversé par de l'eau [Desmettre et Charron, 2011] et un élément structurel traversé par de l'air sec [Nahas et al., 2014]) permet de comparer la pertinence des deux modèles mécaniques utilisés ainsi que l'approche utilisée pour estimer le débit traversant des éléments en béton fissurés. / The durability of concrete structures is nowadays fully integrated in the civil engineering constructions design process. Whatever the loading is (mechanical, thermic, hydric), cracks may appear and impact the structure lifespan by the infiltration of aggressive agents. The serviceability can be directly impacted for the structures playing an air/water tightness role (containment building nuclear power plants, liquefied natural gas storage tanks, dams, radioactive waste disposal, etc.). The prediction of the flow going through elements composed of a cementitious material is therefore a major scientific and industrial issue. To achieve this goal, a hydro-mechanical coupling must be implemented. The anisotropic cracking induced by complex mechanical loadings leads to an anisotropic macroscopic permeability tensor. This tensor computation is an important issue dealing with phenomenological models for macroscopic problems. The cracking modelling of quasi-brittle materials, heterogeneous at the mesoscopic scale like concrete, is complex and different mechanical approaches can lead to various results. Therefore, permeability calculations are an elegant way to examine cracking patterns obtained with several mechanical models. Consequently, this study compares two mechanical approaches: - the first one is based on an Embedded Finite Element Method (E-FEM) mechanical model [Benkemoun et al., 2010] - - the second one is based on a damage mechanical model [Mazars, 1984] regularised by the fracture energy of the material [Hillerborg et al., 1976]. This thesis presents a hydro-mechanical approach weakly coupling a mechanical model with a permeation model in 3D at the mesoscopic scale. This work is based on the “double porosity” concept splitting the permeability into two parts: the first one is isotropic and corresponds to flows within the porosity of the material- the second one, based upon a set of cracks with different orientations and openings, is anisotropic. For the latter, each crack is a path for mass flow according to the fluid laws considering two infinite planes. In order to check this approach relevance, numerical results are compared to experimental results extracted from the literature (an experiment where water goes through a specimen made of a steel reinforcing bar covered with concrete under load [Desmettre et Charron, 2011] and a device where dry air goes through a structural element made of reinforced concrete [Nahas et al., 2014]). The computation of the flow going to those cracked concrete elements helps to understand the presented approach efficiency and the differences between the two used mechanical models.
|
4 |
Progressive failure analyses of concrete buttress dams : Influence of crack propagation on the structural dam safety / Analys av brottförlopp hos betonglamelldammar : Inverkan av sprickpropagering på dammsäkerhetenFu, Chaoran, Hafliðason, Bjartmar January 2015 (has links)
Concrete buttress dams are the most common type of concrete dams for hydropower production in Sweden. Cracks have been observed in some of the them. However, only limited research has been made concerning the influence of these cracks on the structural dam safety. In conventional analytical stability calculations, a concrete dam is assumed to be a rigid body when its safety is verified. However, when cracks have been identified in a dam structure, the stability may be influenced and hence the information of cracks may need to be included in the stability calculations. The main aim of this project is to study how existing cracks and further propagation of these cracks, influence the structural dam safety. Another important topic was to study suitable methods to analyse a concrete dam to failure. In addition, a case study is performed in order to capture the real failure mode of a concrete buttress dam. The case study that has been studied is based on a previous project presented by Malm and Ansell (2011), where existing cracks were identified in a 40m high monolith, as a result from seasonal temperature variations. Two similar models are analysed where one model is defined with an irregular rock-concrete interface, and the other with a horizontal interface. Analyses have been performed on both an uncracked concrete dam but also for the case where information regarding existing cracks, from the previous project, have been included in order to evaluate the influence of cracks on the dam safety. The finite element method has been used as the main analysis tool, through the use of the commercially available software package Abaqus. The finite element models included nonlinear material behaviour and a loading approach for successively increasing forces called overloading, when performing progressive failure analyses. The results show that existing cracks and propagation of these resulted, in this case, in an increased structural safety of the studied dam. Furthermore, an internal failure mode is captured. The irregular rock-concrete interface has a favourable effect on a sliding failure and an unfavourable effect on an overturning failure, compared to the case with the horizontal interface. Based on the results, the structural safety and the failure mode of concrete buttress dams are influenced by existing cracks. Although an increased safety is obtained in this study, the results do not necessarily apply for other monoliths of similar type. It is thus important that existing cracks are considered in stability analyses of concrete buttress dams. / Lamelldammar är den vanligaste typen av betongdammar för vattenkraft produktion i Sverige. I vissa av dessa har sprickbildning observerats. Begränsad forskning har gjorts på hur dessa sprickor påverkar dammens säkerhet. I de vedertagna analytiska stabilitetsberäkningarna antas att betongdammar agerar som en stel kropp när man verifierar dess säkerhet. Befintliga sprickor i en damm kropp kan dock påverka dess stabilitet och kan därför behöva beaktas i stabilitetsberäkningarna. Huvudsyftet med detta projekt är att studera hur befintliga sprickor och dess propageringen påverkar dammsäkerheten. Ett annat viktigt syfte är att studera lämpliga metoder för att analysera en betongdamm till brott. Dessutom, genomförs en fallstudie i syfte att analysera ett verkligt brottförlopp av en lamelldamm. Fallstudien som utförs i detta projekt, baseras på ett tidigare projekt utfört av Malm and Ansell (2011), där befintliga sprickor identifierades i en monolit på 40m som ett resultat av temperaturvariationer. Två modeller med snarlik geometri har analyserats, där den ena är definierad med en med oregelbunden kontaktyta mellan berg och betong och den andra med en horisontell kontaktyta. Analyserna har utförts på dels en osprucken damm men även där information om befintliga sprickor från det tidigare projektet beaktas, i syfte att jämföra inverkan av sprickor på dammsäkerheten. Finita element metoden har använts som verktyg vid dessa analyser, genom det kommersiellt använda programmet Abaqus. De finita element modellerna inkluderar icke-linjära material egenskaper hos betong och armering samt baseras på en metod för successiv belastning, som kallas 'overloading', vid analys av brottförloppet. Resultatet visar att befintliga sprickor och propageringen av dessa i detta fall kan leda till ökad säkerhet hos den studerade dammen jämfört mot fallet utan beaktande av sprickbildning. Utöver detta fångas även ett inre brottmod. Den oregelbundna kontaktytan mellan betongen och berget har en gynnsam effekt vid ett glidbrott men en ogynnsam inverkan vid ett stjälpningsbrott, i jämförelse med fallet med en horisontell kontaktyta. Baserat på dessa resultat så påverkas dammens säkerhet och brottetförloppet hos lamelldammen utav befintliga sprickor. Även om en ökad säkerhet fås i denna studie är det inte säkert att detta stämmer för andra monoliter av samma slag. Dock är det viktigt att hänsyn tas till befintliga sprickor i stabilitets analyser av lamelldammar.
|
5 |
Anchorage in Concrete Structures : Numerical and Experimental Evaluations of Load-Carrying Capacity of Cast-in-Place Headed Anchors and Post-Installed Adhesive AnchorsNilforoush, Rasoul January 2017 (has links)
Various anchorage systems including both cast-in-place and post-installed anchors have been developed for fastening both non-structural and structural components to concrete structures. The need for increased flexibility in the design of new structures and strengthening of existing concrete structures has led to increased use of various metallic anchors in practice. Although millions of fasteners are used each year in the construction industry around the world, knowledge of the fastening technology remains poor. In a sustainable society, buildings and structures must, from time to time, be adjusted to meet new demands. Loads on structures must, in general, be increased to comply with new demands, and the structural components and the structural connections must also be upgraded. From the structural connection point of view, the adequacy of the current fastenings for the intended increased load must be determined, and inadequate fastenings must either be replaced or upgraded. The current design models are generally believed to be conservative, although the extent of this behavior is not very clear. To address these issues, the current models must be refined to allow the design of new fastenings and also the assessment of current anchorage systems in practice. The research presented in this thesis consists of numerical and experimental studies of the load-carrying capacity of anchors in concrete structures. Two different types of anchors were studied: (I) cast-in-place headed anchors, and (II) post-installed adhesive anchors. This research focused particularly on the tensile load-carrying capacity of cast-in-place headed anchors and also on the sustained tension loading performance of post-installed adhesive anchors. The overall objective of this research was to provide knowledge for the development of improved methods of designing new fastening systems and assessing the current anchorage systems in practice. For the cast-in-place headed anchors (I), the influence of various parameters including the size of anchor head, thickness of concrete member, amount of orthogonal surface reinforcement, presence of concrete cracks, concrete compressive strength, and addition of steel fibers to concrete were studied. Among these parameters, the influence of the anchor head size, member thickness, surface reinforcement, and cracked concrete was initially evaluated via numerical analysis of headed anchors at various embedment depths. Although these parameters have considerable influence on the anchorage capacity and performance, this influence is not explicitly considered by the current design models. The numerical results showed that the tensile breakout capacity of headed anchors increases with increasing member thickness and/or increasing size of the anchor head or the use of orthogonal surface reinforcement. However, their capacity decreased considerably in cracked concrete. Based on the numerical results, the current theoretical model for the tensile breakout capacity of headed anchors was extended by incorporating several modification factors that take the influence of the investigated parameters into account. In addition, a supplementary experimental study was performed to verify the numerically obtained findings and the proposed refined model. The experimental results corresponded closely to the numerical results, both in terms of failure load and failure pattern, thereby confirming the validity of the proposed model. The validity of the model was further confirmed through experimental results reported in the literature. Additional experiments were performed to determine the influence of the concrete compressive strength and the addition of steel fiber to concrete on the anchorage capacity and performance. These experiments showed that the anchorage capacity and stiffness increase considerably with increasing concrete compressive strength, but the ductility of the anchor decreases. However, the anchorage capacity and ductility increased significantly with the addition of steel fibers to the concrete mixture. The test results also revealed that the tensile breakout capacity of headed anchors in steel fiber-reinforced concrete is significantly underestimated by the current design model. The long-term performance and creep behavior of the post-installed headed anchors (II) was evaluated from the results of long-time tests on adhesive anchors under sustained loads. In this experimental study, adhesive anchors of various sizes were subjected to various sustained load levels for up to 28 years. The anchors were also exposed to several in-service conditions including indoor temperature, variations in the outdoor temperature and humidity, wetness (i.e., water on the surface of concrete), and the presence of salt (setting accelerant) additives in the concrete. Among the tested in-service conditions, variations in the outdoor temperature and humidity had the most adverse effect on the long-term sustained loading performance of the anchors. Based on the test results, recommendations were proposed for maximum sustained load levels under various conditions. The anchors tested under indoor conditions could carry sustained loads of up to 47% of their mean ultimate short-term capacities. However, compared with these anchors, the anchors tested under outdoor conditions exhibited larger creep deformation and failure occurred at sustained loads higher than 23% of their mean ultimate short-term capacities. Salt additives in concrete and wet conditions had negligible influence on the long-term performance of the anchors, although the wet condition resulted in progressive corrosion of the steel. Based on the experimental results, the suitability of the current testing and approval provisions for qualifying adhesive anchors subjected to long-term sustained tensile loads was evaluated. The evaluations revealed that the current approval provisions are not necessarily reliable for qualifying adhesive anchors for long-term sustained loading applications. Recommendations were given for modifying the current provisions to ensure safe long-term performance of adhesive anchors under sustained loads.
|
Page generated in 0.054 seconds