Spelling suggestions: "subject:"critical paper"" "subject:"critical taped""
1 |
Deformation processes in great subduction zone earthquake cyclesHu, Yan 29 April 2011 (has links)
This dissertation consists of two parts and investigates the crustal deformation associated with great subduction zone earthquake at two different spatial scales. At the small scale, I investigate the stress transfer along the megathrust during great earthquakes and its effects on the forearc wedge. At the large scale, I investigate the viscoelastic crustal deformation of the forearc and the back arc associated with great earthquakes.
Part I: In a subduction zone, the frontal region of the forearc can be morphologically divided into the outer wedge and the inner wedge. The outer wedge which features much active plastic deformation has a surface slope angle generally larger than that of the inner wedge which hosts stable geological formations. The megathrust can be represented by a three-segment model, the updip zone (velocity-strengthening), seismogenic zone (velocity-weakening), and downdip zone (velocity-strengthening). Our dynamic Coulomb wedge theory postulates that the outer wedge overlies the updip zone, and the inner wedge overlies the seismogenic zone. During an earthquake, strengthening of the updip zone may result in compressive failure in the outer wedge. The inner wedge undergoes elastic deformation. I have examined the geometry and mechanical processes of outer wedges of twenty-three subduction zones. The surface slope of these wedges is generally too high to be explained by the classical critical taper theory but can be explained by the dynamic Coulomb wedge theory.
Part II: A giant earthquake produces coseismic seaward motion of the upper plate and induces shear stresses in the upper mantle. After the earthquake, the fault is re-locked, causing the upper plate to move slowly landward. However, parts of the fault will undergo continuous aseismic afterslip for a short duration, causing areas surrounding the rupture zone to move seaward. At the same time, the viscoelastic relaxation of the earthquake-induced stresses in the upper mantle causes prolonged seaward motion of areas farther landward including the forearc and the back arc. The postseismic and interseismic crustal deformation depends on the interplay of these three primary processes. I have used three-dimensional viscoelastic finite element models to study the contemporary crustal deformation of three margins, Sumatra, Chile, and Cascadia, that are presently at different stages of their great earthquake cycles. Model results indicate that the earthquake cycle deformation of different margins is governed by a common physical process. The afterslip of the fault must be at work immediately after the earthquake. The model of the 2004 Sumatra earthquake constrains the characteristic time of the afterslip to be 1.25 yr. With the incorporation of the transient rheology, the model well explains the near-field and far-field postseismic deformation within a few years after the 2004 Sumatra event. The steady-state viscosity of the continental upper mantle is determined to be 10^19 Pa S, two orders of magnitude smaller than that of the global value obtained through global postglacial rebound models. / Graduate
|
2 |
Deformation processes in great subduction zone earthquake cyclesHu, Yan 29 April 2011 (has links)
This dissertation consists of two parts and investigates the crustal deformation associated with great subduction zone earthquake at two different spatial scales. At the small scale, I investigate the stress transfer along the megathrust during great earthquakes and its effects on the forearc wedge. At the large scale, I investigate the viscoelastic crustal deformation of the forearc and the back arc associated with great earthquakes.
Part I: In a subduction zone, the frontal region of the forearc can be morphologically divided into the outer wedge and the inner wedge. The outer wedge which features much active plastic deformation has a surface slope angle generally larger than that of the inner wedge which hosts stable geological formations. The megathrust can be represented by a three-segment model, the updip zone (velocity-strengthening), seismogenic zone (velocity-weakening), and downdip zone (velocity-strengthening). Our dynamic Coulomb wedge theory postulates that the outer wedge overlies the updip zone, and the inner wedge overlies the seismogenic zone. During an earthquake, strengthening of the updip zone may result in compressive failure in the outer wedge. The inner wedge undergoes elastic deformation. I have examined the geometry and mechanical processes of outer wedges of twenty-three subduction zones. The surface slope of these wedges is generally too high to be explained by the classical critical taper theory but can be explained by the dynamic Coulomb wedge theory.
Part II: A giant earthquake produces coseismic seaward motion of the upper plate and induces shear stresses in the upper mantle. After the earthquake, the fault is re-locked, causing the upper plate to move slowly landward. However, parts of the fault will undergo continuous aseismic afterslip for a short duration, causing areas surrounding the rupture zone to move seaward. At the same time, the viscoelastic relaxation of the earthquake-induced stresses in the upper mantle causes prolonged seaward motion of areas farther landward including the forearc and the back arc. The postseismic and interseismic crustal deformation depends on the interplay of these three primary processes. I have used three-dimensional viscoelastic finite element models to study the contemporary crustal deformation of three margins, Sumatra, Chile, and Cascadia, that are presently at different stages of their great earthquake cycles. Model results indicate that the earthquake cycle deformation of different margins is governed by a common physical process. The afterslip of the fault must be at work immediately after the earthquake. The model of the 2004 Sumatra earthquake constrains the characteristic time of the afterslip to be 1.25 yr. With the incorporation of the transient rheology, the model well explains the near-field and far-field postseismic deformation within a few years after the 2004 Sumatra event. The steady-state viscosity of the continental upper mantle is determined to be 10^19 Pa S, two orders of magnitude smaller than that of the global value obtained through global postglacial rebound models. / Graduate
|
3 |
Structure et métamorphisme de la klippe de Jaljala (Népal Central), implications sur les modèles de formation de l'Himalaya / Structure and metamorphism of the Jaljala klippe (Central Nepal), implications on the Himalaya formation modelAubray, Alexandre 29 September 2017 (has links)
La chaîne himalayenne constitue le paradigme actuel des chaînes de collision. Cependant, les processus de formation de cette chaîne sont toujours en discussion. Bien que fondamentales pour comprendre la formation de la chaine, les klippes de Haut Himalaya Cristallin (HHC) sont paradoxalement assez peu intégrées dans les différents modèles. Dans la klippe de Jaljala (Centre – Ouest Népal) la combinaison d’études structurales pétrographiques et géochronologiques (40Ar/39Ar) ont permis de caractériser près du front de l’Himalaya la géométrie et la cinématique du Main Central Thrust (MCT) et d'une zone de cisaillement top vers le nord : la zone de cisaillement de Jaljala, failles qui encadrent le HHC. Les résultats montrent que le MCT et la zone de cisaillement de Jaljala ont été replissés et que le que la zone de cisaillement de Jaljala est proche du MCT au nord de la klippe. Une faille normale intra – séquences téthysiennes (TH) a été découverte, faille interprétée comme étant la zone de cisaillement de Jaljala sur le flanc sud de la klippe. Les données pétrographiques montrent une augmentation progressive de la température entre 350 et 550 °C au travers du MCT dans le Haut Himalaya Cristallin alors qu’elle atteint plus de 650 °C au Nord dans les zones internes. Les pseudosections montrent que ce pic de température est atteint après un échauffement isobare à desvaleurs de pression variant entre 7 à 9 kbars. Les âges 40Ar/39Ar sur micas montrent trois populations : environ 20, environ 40 et environ 100 Ma dans le HHC et dans les séquences téthysiennes. Deux hypothèses peuvent être proposées : soit l’exhumation est marquée par les âges à 40 Ma ce qui représente une date relativement ancienne pour l’exhumation du Haut Himalaya Cristallin au front de la chaîne, soit elle est datée à 20 Ma ce qui représente des âges plus communs d’exhumation sur le MCT et sous le STD (South Tibetan Detachment). La nature des roches observées, leurs déformations ainsi que les corrélations avec les résultats des autres klippes montrent que la zone de cisaillement de Jaljala ne peut être connecté au STD des zones internes. Le MCT et le STD ne peuvent se rejoindre en profondeur au front de la klippe ce qui exclut le modèle de prisme tectonique. Enfin la continuité des pressions et températures des zones internes avec les roches de la klippe va à l’encontre du modèle de fluage de croûte chenalisée puisqu’il n’y a pas de fusion partielle dans la klippe de Jaljala. Les structures, les conditions métamorphiques et les âges seraient plutôt compatibles avec la formation d’un duplex de Haut Himalaya Cristallin dont la géométrie est cependant mal contrainte et qui nécessiterait de présenter un système de plat – rampe frontal pour transférer les écailles les plus internes sur le front de la chaîne et ainsi former les klippes comme la klippe de Jaljala qui seront ensuite isolées de la zone interne par la formation d’un duplex Moyen Himalaya. / The Himalayan belt is the actual paradigm of collision mountain belt. However, formation model remains still under discussion. Even fundamental to understand the belt formation, the High Himalaya Cristalline (HHC) klippen are poorly integrated to the different existing models. In the Jaljala klippe (Western Central Nepal) a combination of structural, petrographic and geochronological (40Ar/39Ar) studies have allowed to caracterise close to the Himalaya front, the Main Central Thrust (MCT) and a top - to - the North shear zone : the Jaljala shear zone geometry and kinematics, faults that bordered the HHC. Results show that the MCT and the Jaljala shear zone have been refolded and the Jaljala shear zone is close to the MCT in the North of the klippe. An intra téthyan sequences (TH) have been discovered and interpreted as the Jaljala shear zone in the southern flank of the klippe. Petrographic datas show a progressive augmentation of temperature between 350 and 550 ° C cross to the MCT in High Himalaya Cristalline instead of 650 °C in the internal zones. Pseudosections show this temperature peak is achieved after an isobaric warming at pressure varying between 7 and 9 bars. 40Ar/39Ar ages on micas show three ages populations : about 20, about 40 and about 100 Myrs in the HHC and in Tethyan sequences. Two hypothesis can be proposed : on the one hand, the exhumation can be testified by 40 Myrs ages which represent an ancient age for the High Himalaya Crystalline in the front belt, on the other hand, it is dated at 20 Myrs which represent more commons ages for exhumation on MCT and under STD (South Tibetan Detachment). Rock lithology and their deformations and correlations with results for other klippen show that the STD in the Jaljala klippe cannot be connected width the STD in internal zones. The MCT and the STD cannot converge in depth at the front that excluded the tectonic wedge model. Finally, the pressures and temperature continuities in internal zones and with the klippe rocks excluded the channel flow model because partial melting is absent in the Jaljala klippe. Structures, metamorphic conditions and ages are more compatible with High Himalaya Crystalline duplex formation whose geometry is still poorly constrained and which necessitate a frontal flat - ramp system to transfer crustal nape on the front of the belt and then to form klippe as the Jaljala klippe that will then isolated from internal zones by Lesser Himalaya duplex formation.
|
Page generated in 0.0623 seconds