• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The SH2 Domain-Containing Adaptor Protein SHD Reversibly Binds the CRKL-SH2 Domain and Knockdown of shdb Impairs Zebrafish Eye Development

Chandler, Brendan 01 January 2018 (has links)
The adaptor protein CT10-Regulator of Kinase (CRK) and the closely related CRK-Like (CRKL) are adaptor proteins that play important roles in many signaling pathways regulating cell proliferation and cell motility. A notable example is their required role in Reelin signaling during development of the laminated structures of the vertebrate central nervous system, including the cerebral cortex, cerebellum, hippocampus, and retina. As adaptors, CRK/CRKL are important in coupling phosphotyrosine signaling to G protein activity to regulate both cell proliferation and changes in the actin cytoskeleton, thereby exerting control over cell motility, and migration. While many proteins that interact with CRK/CRKL have been identified, the diverse roles of these molecules suggest that more remain to be found. Herein is described a novel CRK/CRKL interacting protein, Src Homology 2 domain-containing protein D (SHD), which demonstrates a phosphorylation-dependent interaction with the CRK/CRKL SH2 domain in HEK 293 cells stimulated with hydrogen peroxide, which globally boosts tyrosine phosphorylation by inhibiting tyrosine phosphatases. Treatment with an inhibitor for Src family kinases (SFKs), Src-1, or an inhibitor of Abl/Arg kinases, STI571, reduces peroxide-induced binding of the CRKL-SH2 domain to SHD. We show that overexpression of Abl kinase, but not the SFK Fyn is sufficient to induce binding of the CRKL-SH2 to SHD and that this interaction requires at least one of the five tyrosines in YxxP motifs found in SHD. Using mass spectrometry, we found that Abl phosphorylates SHD on Y144, which is located in a YxxP motif. Mutation of this site to phenylalanine reduces, but does not prevent, Abl-induced binding of SHD to the CRKL-SH2 domain, suggesting that other YxxP sites also facilitate the interaction. A discussion of the cellular consequences of the interaction between SHD and CRK/CRKL is presented. To explore the biological role of SHD, we used the zebrafish to study shdb, a putative ortholog of human SHD. The expression of shdb was unknown and so we performed in situ hybridization and determined that shdb was expressed in the developing nervous system. To study the function of this gene, we used a morpholino to knock down expression of shdb which resulted in significantly reduced eye size. Possible roles of Shdb in eye development are discussed as is future research aimed to elucidate the cellular and developmental mechanisms by which Shdb functions in the developing eye.
2

Abl Tyrosine Kinases Mediate Intercellular Adhesion

Zandy, Nicole Lynn 24 April 2008 (has links)
<p>Adherens junctions are calcium-dependent cell-cell contacts formed during epithelial morphogenesis that link neighboring cells via cadherin receptors. Coordinated regulation of the actin cytoskeleton by the Rho GTPases is required for the formation and dissolution of adherens junctions, however the pathways that link cadherin signaling to cytoskeletal regulation remain poorly defined. The Abl family of tyrosine kinases have been shown to modulate cytoskeletal reorganization downstream of various extracellular signals including growth factor receptors and integrins.</p><p>Here we use pharmacological inhibition and RNA interference to identify the Abl family kinases as critical mediators of cadherin-mediated adhesion. Endogenous Abl family kinases, Abl and Arg, are activated and are required for Rac activation following cadherin engagement, and regulate the formation and maintenance of adherens junctions in mammalian cells. Significantly, we show that Abl-dependent regulation of the Rho-ROCK-myosin signaling pathway is critical for the maintenance of adherens junctions. Inhibition of the Abl kinases in epithelial sheets results in activation of Rho and its downstream target ROCK, leading to enhanced phosphorylation of the myosin regulatory light chain. These signaling events result in enhanced stress fiber formation and increased acto-myosin contractility, thereby disrupting adherens junctions. Conversely, Arg gain-of-function promotes adherens junction formation through a Crk-dependent pathway in cells with weak junctions. These data identify the Abl kinases as a novel regulatory link between the cadherin/catenin adhesion complex and the actin cytoskeleton through regulation of Rac and Rho during adherens junction formation.</p><p>Unexpectedly, we identified a requirement for Abl and Crk downstream of Rac in the regulation of adherens junctions. Therefore, Abl functions both upstream and downstream of Rac in regulating adherens junctions, which suggests the possibility of a positive feedback loop consisting of Abl-Crk-Rac.</p><p>Finally, we identified the Abl kinases as critical mediators of epithelial cell response to HGF. Pharmacological inhibition of Abl kinase activity resulted in impaired dissolution of adherens junctions downstream of HGF stimulation of the Met receptor. Additionally, we observed decreased phosphorylation of the Met receptor itself, along with Gab1 and Crk, downstream effectors of Met signaling. Taken together, these data suggest a requirement for Abl kinases in both adherens junctions formation and turnover.</p> / Dissertation
3

The role of adaptor proteins Crk and CrkL in lens development

Collins, Tamica N. 04 May 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cell shape changes and signaling pathways are essential for the development and function of the lens. During lens development proliferating epithelial cells will migrate down to the equator of the lens, differentiate into lens fiber cells, and begin to elongate along the lens capsule. The Fibroblast Growth Factor (FGF) signaling pathway has been extensively studied for its role in lens fiber cell differentiation and elongation. However, the main mediators of FGF stimulated lens fiber cell elongation have not been identified. Adaptor proteins Crk and CrkL are SH2- and SH3-containing proteins that transduce signals from upstream tyrosine phosphorylated proteins to downstream effectors, including Ras, Rac1 and Rap1, which are important for cell proliferation, adhesion and migration. Underlying their diverse function, these two adaptor proteins have been implicated in receptor tyrosine kinase signaling, focal adhesion assembly, and cell shape. To explore the role of Crk and CrkL in FGF signaling-dependent lens development and fiber elongation, we employed Cre/LoxP system to generate a lens specific knockout of Crk/CrkL. This led to extracellular matrix defects, disorganization of the lens fiber cells, and a defect in lens fiber cell elongation. Deletion of Crk and CrkL in the lens also mitigated the gain-of-function phenotype caused by overexpression of FGF3, indicating an epistatic relationship between Crk/CrkL and FGF signaling during lens fiber cell elongation. Further studies, revealed that the activity of Crk and CrkL in FGF signaling is controlled by the phosphatase Shp2 and the defect observed in lens fiber cell elongation can be rescued by constitutive activation of the GTPases Ras and Rac1 in the Crk and CrkL mutant lens. Interestingly, the deletion of the GTPases Rap1 in the lens showed no obvious phenotype pertaining to lens fiber cell elongation. These findings suggest that Crk and CrkL play an important role in integrating FGF signaling and mediating lens fiber cell elongation during lens development.
4

Vliv inhibice SH3 domény proteinu Crk na invazivitu nádorových buněk / The effect of Crk SH3domain inhibition in invasiveness of cells

Tomášová, Lea January 2015 (has links)
Protooncogene Crk was found to be upregulated in tumours with aggressive and invasive potential. The adaptor protein Crk has an important role in cell signaling: it integrates signals from activated integrins and growth factors receptors via its SH2 domain and transmits the signal to its SH3 domain binding partners that activate the small GTPases Rac1, Rap1 and Ras. This leads to regulation of cell migration, proliferation and survival. The aim of this thesis project was to inhibit the Crk dependent signaling by a competitive inhibition of the Crk SH3 domain, using a high affinity CrkSH3 binding peptoid. Binding of the inhibitor to the Crk SH3 domain prevents binding of cellular Crk SH3 interaction partners and the corresponding signal transmission is impaired. In this thesis project the effect of the Crk SH3 inhibition on the invasiveness of cancer cells was analyzed. The observed inhibitory effect on cell invasion as well as on anchorage independent growth provides a proof of therapeutical relevance of targeting CrkSH3N domain by peptoide-based inhibitors. Powered by TCPDF (www.tcpdf.org)
5

Antiphagocytosis by Yersinia pseudotuberculosis : role of the YopH target proteins /

Yuan, Ming, January 2006 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2007. / Härtill 4 uppsatser.
6

The roles of the small pMEKK subfamily comprising MAPKKK19, 20 and 21 in Arabidopsis thaliana

Bai, Fangwen 01 1900 (has links)
No description available.
7

Receptor Guanylyl Cyclase C Cross-talk With Tyrosine Kinases And The Adaptor Protein, Crk

Vivek, T N 06 1900 (has links)
Signal transduction is a crucial event that enables cells to sense and respond to cues from their immediate environment. Guanylyl cyclase C (GC-C) is a member of the family of receptor guanylyl cyclases. GC-C is a single transmembrane protein that responds to its ligands by the production of the second messenger cGMP. The guanylin family of peptides, (including the bacterially produced heat-stable enterotoxin ST) is the ligand for GC-C, elevates intracellular cGMP levels and activates downstream pathways. GC-C regulates the cystic fibrosis transmembrane conductance regulator (CFTR) by inducing phosphorylation by protein kinase G, resulting in chloride ion and fluid efflux. GC-C also regulates cell cycle progression through cGMP-gated Ca2+ channels. These functions are seen in the intestinal epithelium, the primary site for GC-C expression. GC-C as a molecule has been studied in detail, but its functioning in the context of other signaling pathways remains unknown. The aim of the present investigation was to understand the regulation of signal transduction by GC-C and its cross-talk with other signaling pathways operating in the cell. Molecular events that commonly connect components in a signaling pathway are protein phosphorylation and protein-protein interaction. These two aspects are explored in this thesis. The possibility of tyrosine phosphorylation of GC-C has been explored earlier in our laboratory. In vitro studies indicated that the residue Tyr820 was a site for phosphorylation by the Src family of non-receptor tyrosine kinases and those studies also suggested that phosphorylated Tyr820 could bind to the SH2 domain of Src. We generated a nonphosphorylatable mutant of GC-C, GC-CY820F, and a phosphomimetic mutant GC-CY820E to study the effect of phosphorylation of Tyr820, on the functioning of GC-C. A stable cell line of HEK293:GC-CY820F cells was generated and compared with HEK293:GC-CWT. Dose response to ST in the two cell lines showed that cGMP accumulation by GC-CY820F was greater than that of GC-CWT, although the EC50 remained unchanged. The phosphomimetic GC-CY820E mutant receptor was non-responsive to ST. Further in HEK293 cells, phosphorylation of GC-CWT by constitutively active v-Src resulted in decreased ST stimulation and this effect of v-Src was reduced with GC-CY820F. Inhibition of ST stimulation brought about by v-Src required catalytically active Src, as the kinase inactive v-SrcK295R did not inhibit ST stimulation. These results were corroborated by in vitro studies by using the recombinant catalytic domain of GC-C expressed in insect cells and by phosphorylation using a purified kinase, Hck. Observations suggested that phosphorylation of Tyr820 in the catalytic domain of GC-C compromises the guanylyl cyclase activity of GC-C. T84 and Caco-2 colon carcinoma cells endogenously express GC-C. The effect of tyrosine phosphorylation of GC-C was studied by using HgCl2, a known activator of Src kinases, and by the inhibition of protein tyrosine phosphatases using pervanadate, an irreversible inhibitor. Both these ways of achieving increased tyrosine phosphorylation resulted in decreased ST-stimulated cGMP production by GC-C, as suggested from v-Src transfection studies. This decrease was reversed by using a Src kinase specific inhibitor PP2, confirming the role of Src kinases in the inhibition of GC-C activity. Interestingly, in Caco-2 cells that differentiate in culture, the effect of pervanadate on the inhibition of ST-stimulated GC-C activation was dependent on the differentiation stage. Crypt-like cells showed higher inhibition with pervanadate. As they matured into villus-like cells, the effect of pervanadate on GC-C activation was gradually lost. This effect also correlated with a decrease in the expression of Lck, suggesting that in the context of the intestine there could be differential regulation of tyrosine phosphorylation of GC-C along the crypt-villus axis. Intestinal ligated loop assays in rats demonstrated that ST-induced fluid accumulation in the intestine was abrogated on pervanadate treatment. Reduction in this fluid accumulation by pervanadate was not observed with 8-Br-cGMP, a cell permeable analogue of cGMP. This indicated that tyrosine phosphorylation of proteins is important for ST-induced fluid accumulation, and perhaps pervanadate modulates this by phosphorylation of GC-C, thereby causing a reduction in fluid accumulation. Earlier in vitro studies on Src-SH2 binding from the laboratory had suggested the possibility of activation of Src family kinases by GC-C. The activation status of Src kinases was monitored by using phosphorylation-state specific antibody, pSFK416. ST stimulation in T84 cells increased Tyr416 phosphorylation of Src kinases in a time dependent manner, indicating that Src kinases are activated downstream of GC-C. This activation of Src kinases was also seen with the endogenous ligand of GC-C, uroguanylin. Interestingly, 8-Br-cGMP a cell permeable analogue of cGMP that is known to mimic other cellular effects of GC-C, namely Cl-secretion and cell cycle progression, did not activate Src kinases, suggesting that the mechanism of Src kinase activation by GC-C could be independent of cGMP. Binding affinities of Src, Lck, Fyn and Yes SH2 domains to Tyr820 phosphorylated GCC peptide were in the nM range, indicating a high affinity of interaction. In vitro GST-SH2 pull down experiments suggested that phosphorylation of Tyr820 in full length GC-C allows interaction of GC-C to the SH2 domain of Src. These studies suggest a dual cross-talk between Src kinases and GC-C; Src phosphorylation inhibits GC-C signaling and stimulation of GC-C by its ligands activates Src kinases. Interaction of proteins containing SH2 and SH3 domains are commonly found in signaling molecules. In accordance with the observation that there are three PXXP motifs in GCC, many SH3 domains could interact with GC-C. GC-C appears to show a preference to bind the SH3 domains of Fyn, Hck, Abl tyrosine kinases, Grb2 and Crk adaptor proteins, the α-subunit of P85 PI3 kinase, PLC-γ and cortactin to various extents. The SH3 domains of spectrin and Nck did not show any detectable interaction with GC-C. In SH3 pull-down assays, the N-terminal SH3 domain of Crk, CrkSH3 (N), bound GC-C maximally, suggesting that Crk is a good candidate for interaction with GC-C. By overlay analysis, the region of GC-C that binds CrkSH3 (N) was narrowed down to the catalytic domain of GC-C containing a ‘PGLP’ motif. Mutations were generated in GC-C at this site to generate GC-CP916Q and GC-CW918R. These mutations compromised the binding of full length receptor to CrkSH3 (N). In cells, CrkII and GC-C co-transfection inhibited the ST stimulation of GC-C. A CrkII mutant, that has compromised binding through its SH3 domain, did not inhibit the activity of GC-C. CrkII from T84 cells co-immunoprecipitated with GC-C and interestingly, the phosphorylated form of CrkII did not, indicating that GC-C - Crk interaction could be regulated by the phosphorylation of Crk. In summary, this study places GC-C, in the context of tyrosine kinase signaling pathway and interaction with the adaptor protein Crk. These studies suggest that GC-C signal transduction can be altered by cross-talk with other signaling events in the cell. Reversible phosphorylation of tyrosine residues inhibits the activity of GC-C, and this is mediated by Src family kinases. Src kinases themselves are activated on stimulation of GC-C by its ligands, possibly because of SH2 domain interaction with GC-C. Association of Crk by its SH3 domain regulates GC-C functioning primarily by inhibiting ST-stimulated cGMP production. This opens up the possibility of GC-C signaling through a multimeric complex involving other binding partners of Crk, and these cross-talks involving GC-C with the two proto-oncogenes, Src and Crk, might have far reaching consequences in the regulation of cellular functions.

Page generated in 0.047 seconds